Glioblastoma (GBM) is a primary tumor of the brain defined by its uniform lethality and resistance to conventional therapies. There have been considerable efforts to untangle the metabolic underpinnings of this disease to find novel therapeutic avenues for treatment. An emerging focus in this field is fatty acid (FA) metabolism, which is critical for numerous diverse biological processes involved in GBM pathogenesis. These processes can be classified into four broad fates: anabolism, catabolism, regulation of ferroptosis, and the generation of signaling molecules. Each fate provides a unique perspective by which we can inspect GBM biology and gives us a road map to understanding this complicated field. This Review discusses the basic, translational, and clinical insights into each of these fates to provide a contemporary understanding of FA biology in GBM. It is clear, based on the literature, that there are far more questions than answers in the field of FA metabolism in GBM, and substantial efforts should be made to untangle these complex processes in this intractable disease.
Jason Miska, Navdeep S. Chandel
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 3,599 | 1,571 |
755 | 280 | |
Figure | 725 | 9 |
Table | 103 | 0 |
Citation downloads | 133 | 0 |
Totals | 5,315 | 1,860 |
Total Views | 7,175 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.