Activation of the tyrosine kinase c-Src promotes breast cancer progression and poor outcomes, yet the underlying mechanisms are incompletely understood. Here, we have shown that deletion of c-Src in a genetically engineered model mimicking the luminal B molecular subtype of breast cancer abrogated the activity of forkhead box M1 (FOXM1), a master transcriptional regulator of the cell cycle. We determined that c-Src phosphorylated FOXM1 on 2 tyrosine residues to stimulate its nuclear localization and target gene expression. These included key regulators of G2/M cell-cycle progression as well as c-Src itself, forming a positive feedback loop that drove proliferation in genetically engineered and patient-derived models of luminal B–like breast cancer. Using genetic approaches and small molecules that destabilize the FOXM1 protein, we found that targeting this mechanism induced G2/M cell-cycle arrest and apoptosis, blocked tumor progression, and impaired metastasis. We identified a positive correlation between FOXM1 and c-Src expression in human breast cancer and show that the expression of FOXM1 target genes predicts poor outcomes and associates with the luminal B subtype, which responds poorly to currently approved therapies. These findings revealed a regulatory network centered on c-Src and FOXM1 that is a targetable vulnerability in aggressive luminal breast cancers.
Ipshita Nandi, Harvey W. Smith, Virginie Sanguin-Gendreau, Linjia Ji, Alain Pacis, Vasilios Papavasiliou, Dongmei Zuo, Stella Nam, Sherif S. Attalla, Sung Hoon Kim, Sierra Lusson, Hellen Kuasne, Anne-Marie Fortier, Paul Savage, Constanza Martinez Ramirez, Morag Park, John A. Katzenellenbogen, Benita S. Katzenellenbogen, William J. Muller
Coordinated c-Src/FOXM1 activity drives breast cancer progression.