Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.
Sara Duarte-Silva, Jorge Diogo Da Silva, Daniela Monteiro-Fernandes, Marta Daniela Costa, Andreia Neves-Carvalho, Mafalda Raposo, Carina Soares-Cunha, Joana S. Correia, Gonçalo Nogueira-Goncalves, Henrique S. Fernandes, Stephanie Oliveira, Ana Rita Ferreira-Fernandes, Fernando Rodrigues, Joana Pereira-Sousa, Daniela Vilasboas-Campos, Sara Guerreiro, Jonas Campos, Liliana Meireles-Costa, Cecilia M.P. Rodrigues, Stephanie Cabantous, Sergio F. Sousa, Manuela Lima, Andreia Teixeira-Castro, Patricia Maciel
Title and authors | Publication | Year |
---|---|---|
Prediction of protein interactions with function in protein (de-)phosphorylation
Vagiona AC, Notopoulou S, Zdráhal Z, Gonçalves-Kulik M, Petrakis S, Andrade-Navarro MA |
PLOS One | 2025 |
From stigma to increased social acceptance? Living with Machado-Joseph disease in São Miguel, Azores, Portugal.
Couto D, Sequeiros J, Lima M, Sousa L, Mendes Á |
Journal of community genetics | 2024 |
Emerging Roles of Bile Acids and TGR5 in the Central Nervous System: Molecular Functions and Therapeutic Implications
Romero-Ramírez L, Mey J |
International Journal of Molecular Sciences | 2024 |
Tauroursodeoxycholic acid targets HSP90 to promote protein homeostasis and extends healthy lifespan.
Liu JY, Wang Y, Guo Y, Zheng RQ, Wang YY, Shen YY, Liu YH, Cao AP, Wang RB, Xie BY, Jiang S, Han QY, Chen J, Dong FT, He K, Wang N, Pan X, Li T, Zhou T, Li AL, Xia Q, Zhang WN |
Science China. Life sciences | 2024 |