Although aging and lung injury are linked to the development of idiopathic pulmonary fibrosis (IPF), the underlying pathognomonic processes predisposing to fibrotic lesions remain largely unknown. A deficiency in the ability of type 2 alveolar epithelial cell (AEC2) progenitors to regenerate and repair the epithelia has been proposed as a critical factor. In this issue of the JCI, Liang et al. identify a deficiency in the zinc transporter SLC39A8 (ZIP8) in AEC2s and in the subsequent activation of the sirtuin SIRT1 that predisposes to decreased AEC2 renewal capacity and enhanced lung fibrosis in both IPF and aging lungs. Interestingly, the authors demonstrate the efficacy of modulating dietary zinc levels, suggesting the need for clinical trials to evaluate the therapeutic potential of dietary supplementation and the development of pharmacological modulation of the Zn/ZIP8/SIRT1 axis for treatment.
Paul S. Foster, Hock L. Tay, Brian G. Oliver
Title and authors | Publication | Year |
---|---|---|
Identification and Analysis of Key Immune- and Inflammation-Related Genes in Idiopathic Pulmonary Fibrosis
Tan Y, Qian B, Ma Q, Xiang K, Wang S |
Journal of Inflammation Research | 2025 |
Gastroesophageal Reflux Disease in Idiopathic Pulmonary Fibrosis: Viewer or Actor? To Treat or Not to Treat?
Ruaro B, Pozzan R, Confalonieri P, Tavano S, Hughes M, Matucci Cerinic M, Baratella E, Zanatta E, Lerda S, Geri P, Confalonieri M, Salton F |
Pharmaceuticals (Basel, Switzerland) | 2022 |