Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cellular sensors of feast and famine
Eric Ravussin
Eric Ravussin
Published June 15, 2002
Citation Information: J Clin Invest. 2002;109(12):1537-1540. https://doi.org/10.1172/JCI16045.
View: Text | PDF
Commentary

Cellular sensors of feast and famine

  • Text
  • PDF
Abstract

Authors

Eric Ravussin

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
The negative feedback model for the regulation of body weight. In this m...
The negative feedback model for the regulation of body weight. In this model, peripheral signals from energy stores (adipose tissue, muscle, and liver) as well as hormonal and gastrointestinal signals act on the central controllers in the brain, indicating the state of the external and internal environment as they relate to food, metabolic rate, and activity behaviors. In turn, the central controllers integrate these signals and transduce these messages into efferent signals governing the behavioral search for the acquisition of food, as well as modulating its subsequent deposition into energy storage compartments, such as adipose tissue, liver, and muscle. Afferent signals, efferent signals, and central controllers can all be influenced by an organism’s genetic makeup, hence the inter-individual variability in weight change in response to a perturbed energy balance.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts