Autism spectrum disorder (ASD) represents a group of neurodevelopmental phenotypes with a strong genetic component. An excess of likely gene-disruptive (LGD) mutations in GIGYF1 was implicated in ASD. Here, we report that GIGYF1 is the second-most mutated gene among known ASD high–confidence risk genes. We investigated the inheritance of 46 GIGYF1 LGD variants, including the highly recurrent mutation c.333del:p.L111Rfs*234. Inherited GIGYF1 heterozygous LGD variants were 1.8 times more common than de novo mutations. Among individuals with ASD, cognitive impairments were less likely in those with GIGYF1 LGD variants relative to those with other high-confidence gene mutations. Using a Gigyf1 conditional KO mouse model, we showed that haploinsufficiency in the developing brain led to social impairments without significant cognitive impairments. In contrast, homozygous mice showed more severe social disability as well as cognitive impairments. Gigyf1 deficiency in mice led to a reduction in the number of upper-layer cortical neurons, accompanied by a decrease in proliferation and increase in differentiation of neural progenitor cells. We showed that GIGYF1 regulated the recycling of IGF-1R to the cell surface. KO of GIGYF1 led to a decreased level of IGF-1R on the cell surface, disrupting the IGF-1R/ERK signaling pathway. In summary, our findings show that GIGYF1 is a regulator of IGF-1R recycling. Haploinsufficiency of GIGYF1 was associated with autistic behavior, likely through interference with IGF-1R/ERK signaling pathway.
Guodong Chen, Bin Yu, Senwei Tan, Jieqiong Tan, Xiangbin Jia, Qiumeng Zhang, Xiaolei Zhang, Qian Jiang, Yue Hua, Yaoling Han, Shengjie Luo, Kendra Hoekzema, Raphael A. Bernier, Rachel K. Earl, Evangeline C. Kurtz-Nelson, Michaela J. Idleburg, Suneeta Madan-Khetarpal, Rebecca Clark, Jessica Sebastian, Alberto Fernandez-Jaen, Sara Alvarez, Staci D. King, Luiza L.P. Ramos, Mara Lucia S.F. Santos, Donna M. Martin, Dan Brooks, Joseph D. Symonds, Ioana Cutcutache, Qian Pan, Zhengmao Hu, Ling Yuan, Evan E. Eichler, Kun Xia, Hui Guo
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,550 | 1,023 |
253 | 255 | |
Figure | 301 | 28 |
Supplemental data | 172 | 107 |
Citation downloads | 57 | 0 |
Totals | 2,333 | 1,413 |
Total Views | 3,746 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.