We studied the immunological basis for the very potent encephalitogenicity of myelin/oligodendrocyte glycoprotein (MOG), a minor component of myelin in the CNS that is widely used to induce experimental autoimmune encephalomyelitis (EAE). For this purpose, we generated a mutant mouse lacking a functional mog gene. This MOG-deficient mouse presents no clinical or histological abnormalities, permitting us to directly assess the role of MOG as a target autoantigen in EAE. In contrast to WT mice, which developed severe EAE following immunization with whole myelin, MOG-deficient mice had a mild phenotype, demonstrating that the anti-MOG response is a major pathogenic component of the autoimmune response directed against myelin. Moreover, while MOG transcripts are expressed in lymphoid organs in minute amounts, both MOG-deficient and WT mice show similar T and B cell responses against the extracellular domain of MOG, including the immunodominant MOG 35–55 T cell epitope. Furthermore, no differences in the fine specificity of the T cell responses to overlapping peptides covering the complete mouse MOG sequence were observed between MOG+/+ and MOG–/– mice. In addition, upon adoptive transfer, MOG-specific T cells from WT mice and those from MOG-deficient mice are equally pathogenic. This total lack of immune tolerance to MOG in WT C57BL/6 mice may be responsible for the high pathogenicity of the anti-MOG immune response as well as the high susceptibility of most animal strains to MOG-induced EAE.
Cécile Delarasse, Philippe Daubas, Lennart T. Mars, Csaba Vizler, Tobias Litzenburger, Antonio Iglesias, Jan Bauer, Bruno Della Gaspera, Anna Schubart, Laurence Decker, Dalia Dimitri, Guy Roussel, Andrée Dierich, Sandra Amor, André Dautigny, Roland Liblau, Danielle Pham-Dinh
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 562 | 215 |
82 | 46 | |
Figure | 273 | 13 |
Citation downloads | 41 | 0 |
Totals | 958 | 274 |
Total Views | 1,232 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.