Resistance to regeneration of insulin-producing pancreatic β cells is a fundamental challenge for type 1 and type 2 diabetes. Recently, small molecule inhibitors of the kinase DYRK1A have proven effective in inducing adult human β cells to proliferate, but their detailed mechanism of action is incompletely understood. We interrogated our human insulinoma and β cell transcriptomic databases seeking to understand why β cells in insulinomas proliferate, while normal β cells do not. This search reveals the DREAM complex as a central regulator of quiescence in human β cells. The DREAM complex consists of a module of transcriptionally repressive proteins that assemble in response to DYRK1A kinase activity, thereby inducing and maintaining cellular quiescence. In the absence of DYRK1A, DREAM subunits reassemble into the pro-proliferative MMB complex. Here, we demonstrate that small molecule DYRK1A inhibitors induce human β cells to replicate by converting the repressive DREAM complex to its pro-proliferative MMB conformation.
Peng Wang, Esra Karakose, Carmen Argmann, Huan Wang, Metodi Balev, Rachel I. Brody, Hembly G. Rivas, Xinyue Liu, Olivia Wood, Hongtao Liu, Lauryn Choleva, Dan Hasson, Emily Bernstein, Joao A. Paulo, Donald K. Scott, Luca Lambertini, James A. DeCaprio, Andrew F. Stewart
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,288 | 331 |
173 | 65 | |
Figure | 351 | 14 |
Table | 114 | 0 |
Supplemental data | 139 | 13 |
Citation downloads | 74 | 0 |
Totals | 2,139 | 423 |
Total Views | 2,562 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.