Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

GSK3β and the aging kidney
Jordan A. Kreidberg, Valerie A. Schumacher
Jordan A. Kreidberg, Valerie A. Schumacher
Published February 15, 2022
Citation Information: J Clin Invest. 2022;132(4):e155885. https://doi.org/10.1172/JCI155885.
View: Text | PDF
Commentary Article has an altmetric score of 13

GSK3β and the aging kidney

  • Text
  • PDF
Abstract

Kidney function decreases with age and may soon limit millions of lives as the proportion of the population over 70 years of age increases. Glycogen synthase kinase 3β (GSK3β) is involved with metabolism and may have a role in kidney senescence, positioning it as a target for complications from chronic kidney disease. However, different studies suggest GSK3 has contrasting effects. In this issue of the JCI, Fang et al. explored the function of GSK3β and the interplay with lithium using human tissue and mouse models. Notably, GSK3β was overexpressed and activated in aging mice, and depleting GSK3β reduced senescence and glomerular aging. In this Commentary, we explore the similarities and differences between Fang et al. and previous findings by Hurcombe et al. These findings should prompt further study of lithium and other GSK3β inhibitors as a means of extending glomerular function in individuals with chronic kidney disease.

Authors

Jordan A. Kreidberg, Valerie A. Schumacher

×

Total citations by year

Year: 2024 2023 Total
Citations: 2 2 4
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article (4)

Title and authors Publication Year
A novel GSK3β inhibitor 5n attenuates acute kidney injury
Cai YT, Li Z, Wang YY, Li C, Ma QY
Heliyon 2024
The Potential of Naturally Derived Compounds for Treating Chronic Kidney Disease: A Review of Autophagy and Cellular Senescence
Teh YM, Mualif SA, Mohd Noh NI, Lim SK
International Journal of Molecular Sciences 2024
Neuroprotection and axon regeneration by novel low-molecular-weight compounds through the modification of DOCK3 conformation.
Namekata K, Tsuji N, Guo X, Nishijima E, Honda S, Kitamura Y, Yamasaki A, Kishida M, Takeyama J, Ishikawa H, Shinozaki Y, Kimura A, Harada C, Harada T
Cell Death Discovery 2023
Interleukin-15 in kidney disease and therapeutics.
Hall G
Current Opinion in Nephrology and Hypertension 2023

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Blogged by 1
Posted by 4 X users
10 readers on Mendeley
See more details