Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice
Neha Bhat, … , Gerald I. Shulman, Arya Mani
Neha Bhat, … , Gerald I. Shulman, Arya Mani
Published December 2, 2021
Citation Information: J Clin Invest. 2022;132(3):e153724. https://doi.org/10.1172/JCI153724.
View: Text | PDF
Research Article Hepatology Metabolism Article has an altmetric score of 22

Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice

  • Text
  • PDF
Abstract

Mutations in Dyrk1b are associated with metabolic syndrome and nonalcoholic fatty liver disease in humans. Our investigations showed that DYRK1B levels are increased in the liver of patients with nonalcoholic steatohepatitis (NASH) and in mice fed with a high-fat, high-sucrose diet. Increasing Dyrk1b levels in the mouse liver enhanced de novo lipogenesis (DNL), fatty acid uptake, and triacylglycerol secretion and caused NASH and hyperlipidemia. Conversely, knockdown of Dyrk1b was protective against high-calorie-induced hepatic steatosis and fibrosis and hyperlipidemia. Mechanistically, Dyrk1b increased DNL by activating mTORC2 in a kinase-independent fashion. Accordingly, the Dyrk1b-induced NASH was fully rescued when mTORC2 was genetically disrupted. The elevated DNL was associated with increased plasma membrane sn-1,2-diacylglyerol levels and increased PKCε-mediated IRKT1150 phosphorylation, which resulted in impaired activation of hepatic insulin signaling and reduced hepatic glycogen storage. These findings provide insights into the mechanisms that underlie Dyrk1b-induced hepatic lipogenesis and hepatic insulin resistance and identify Dyrk1b as a therapeutic target for NASH and insulin resistance in the liver.

Authors

Neha Bhat, Anand Narayanan, Mohsen Fathzadeh, Mario Kahn, Dongyan Zhang, Leigh Goedeke, Arpita Neogi, Rebecca L. Cardone, Richard G. Kibbey, Carlos Fernandez-Hernando, Henry N. Ginsberg, Dhanpat Jain, Gerald I. Shulman, Arya Mani

×

Full Text PDF

Download PDF (18.48 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Blogged by 1
Posted by 12 X users
25 readers on Mendeley
See more details