BACKGROUND Cytochrome P450 family 8 subfamily B member 1 (CYP8B1) generates 12α-hydroxylated bile acids (BAs) that are associated with insulin resistance in humans.METHODS To determine whether reduced CYP8B1 activity improves insulin sensitivity, we sequenced CYP8B1 in individuals without diabetes and identified carriers of complete loss-of-function (CLOF) mutations utilizing functional assays.RESULTS Mutation carriers had lower plasma 12α-hydroxylated/non–12α-hydroxylated BA and cholic acid (CA)/chenodeoxycholic acid (CDCA) ratios compared with age-, sex-, and BMI-matched controls. During insulin clamps, hepatic glucose production was suppressed to a similar magnitude by insulin, but glucose infusion rates to maintain euglycemia were higher in mutation carriers, indicating increased peripheral insulin sensitivity. Consistently, a polymorphic CLOF CYP8B1 mutation associated with lower fasting insulin in the AMP-T2D-GENES study. Exposure of primary human muscle cells to mutation-carrier CA/CDCA ratios demonstrated increased FOXO1 activity, and upregulation of both insulin signaling and glucose uptake, which were mediated by increased CDCA. Inhibition of FOXO1 attenuated the CDCA-mediated increase in muscle insulin signaling and glucose uptake. We found that reduced CYP8B1 activity associates with increased insulin sensitivity in humans.CONCLUSION Our findings suggest that increased circulatory CDCA due to reduced CYP8B1 activity increases skeletal muscle insulin sensitivity, contributing to increased whole-body insulin sensitization.FUNDING Biomedical Research Council/National Medical Research Council of Singapore.
Shiqi Zhong, Raphael Chèvre, David Castaño Mayan, Maria Corlianò, Blake J. Cochran, Kai Ping Sem, Theo H. van Dijk, Jianhe Peng, Liang Juin Tan, Siddesh V. Hartimath, Boominathan Ramasamy, Peter Cheng, Albert K. Groen, Folkert Kuipers, Julian L. Goggi, Chester Drum, Rob M. van Dam, Ru San Tan, Kerry-Anne Rye, Michael R. Hayden, Ching-Yu Cheng, Shaji Chacko, Jason Flannick, Xueling Sim, Hong Chang Tan, Roshni R. Singaraja
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 747 | 271 |
148 | 93 | |
Figure | 246 | 1 |
Table | 36 | 0 |
Supplemental data | 84 | 16 |
Citation downloads | 61 | 0 |
Totals | 1,322 | 381 |
Total Views | 1,703 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.