Gaucher disease, the most common lysosomal storage disease, is caused by a deficiency of glucocerebrosidase resulting in the impairment of glucosylceramide degradation. The hallmark of the disease is the presence of the Gaucher cell, a macrophage containing much of the stored glucosylceramide found in tissues, which is believed to cause many of the clinical manifestations of the disease. We have developed adult mice carrying the Gaucher disease L444P point mutation in the glucocerebrosidase (Gba) gene and exhibiting a partial enzyme deficiency. The mutant mice demonstrate multisystem inflammation, including evidence of B cell hyperproliferation, an aspect of the disease found in some patients. However, the mutant mice do not accumulate large amounts of glucosylceramide or exhibit classic Gaucher cells in tissues.
Hiroki Mizukami, Yide Mi, Ryuichi Wada, Mari Kono, Tadashi Yamashita, Yujing Liu, Norbert Werth, Roger Sandhoff, Konrad Sandhoff, Richard L. Proia
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 715 | 89 |
110 | 38 | |
Figure | 346 | 11 |
Table | 108 | 0 |
Citation downloads | 63 | 0 |
Totals | 1,342 | 138 |
Total Views | 1,480 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.