Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A therapeutic cancer vaccine delivers antigens and adjuvants to lymphoid tissues using genetically modified T cells
Joshua R. Veatch, … , Scott E. James, Stanley R. Riddell
Joshua R. Veatch, … , Scott E. James, Stanley R. Riddell
Published August 16, 2021
Citation Information: J Clin Invest. 2021;131(16):e144195. https://doi.org/10.1172/JCI144195.
View: Text | PDF
Research Article Immunology

A therapeutic cancer vaccine delivers antigens and adjuvants to lymphoid tissues using genetically modified T cells

  • Text
  • PDF
Abstract

Therapeutic vaccines that augment T cell responses to tumor antigens have been limited by poor potency in clinical trials. In contrast, the transfer of T cells modified with foreign transgenes frequently induces potent endogenous T cell responses to epitopes in the transgene product, and these responses are undesirable, because they lead to rejection of the transferred T cells. We sought to harness gene-modified T cells as a vaccine platform and developed cancer vaccines composed of autologous T cells modified with tumor antigens and additional adjuvant signals (Tvax). T cells expressing model antigens and a broad range of tumor neoantigens induced robust and durable T cell responses through cross-presentation of antigens by host DCs. Providing Tvax with signals such as CD80, CD137L, IFN-β, IL-12, GM-CSF, and FLT3L enhanced T cell priming. Coexpression of IL-12 and GM-CSF induced the strongest CD4+ and CD8+ T cell responses through complimentary effects on the recruitment and activation of DCs, mediated by autocrine IL-12 receptor signaling in the Tvax. Therapeutic vaccination with Tvax and adjuvants showed antitumor activity in subcutaneous and metastatic preclinical mouse models. Human T cells modified with neoantigens readily activated specific T cells derived from patients, providing a path for clinical translation of this therapeutic platform in cancer.

Authors

Joshua R. Veatch, Naina Singhi, Shivani Srivastava, Julia L. Szeto, Brenda Jesernig, Sylvia M. Stull, Matthew Fitzgibbon, Megha Sarvothama, Sushma Yechan-Gunja, Scott E. James, Stanley R. Riddell

×

Figure 6

Tvaxmt-IL-12/GM-CSF cells stimulate host DCs through complimentary mechanisms.

Options: View larger image (or click on image) Download as PowerPoint
Tvaxmt-IL-12/GM-CSF cells stimulate host DCs through complimentary mecha...
Tvax or Tvaxmt-IL-12/GM-CSF cells without antigen were labeled with the lipophilic dye DiI and administered to mice, and splenic DCs were isolated 48 hours after transfer for analysis (n = 4 mice/group). (A) Fraction of DiI+ cells among CD11chiPDCA– cDCs. (B) Total number of purified DCs per mouse. (C) Expression of MHC class I, MHC class II, and CD80 on CD8a– cDCs was measured by flow cytometry. (D) Expression of CD103, CD80, MHC class I, and CD40 on CD8a+ cDC was measured by flow cytometry. (E) PCA of whole-transcriptome data from DiI+ cDCs isolated from individual mice vaccinated with Tvax with mtIL-12, GM-CSF, or both (n = 4 mice/group, samples were labeled DC2-17). *P < 0.01, by 1-way ANOVA.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts