Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Roles for the gut microbiota in regulating neuronal feeding circuits
Kristie B. Yu, Elaine Y. Hsiao
Kristie B. Yu, Elaine Y. Hsiao
Published May 17, 2021
Citation Information: J Clin Invest. 2021;131(10):e143772. https://doi.org/10.1172/JCI143772.
View: Text | PDF
Review Series Article has an altmetric score of 32

Roles for the gut microbiota in regulating neuronal feeding circuits

  • Text
  • PDF
Abstract

The gut microbiota has the capacity to affect host appetite via intestinal satiety pathways, as well as complex feeding behaviors. In this Review, we highlight recent evidence that the gut microbiota can modulate food preference across model organisms. We discuss effects of the gut microbiota on the vagus nerve and brain regions including the hypothalamus, mesolimbic system, and prefrontal cortex, which play key roles in regulating feeding behavior. Crosstalk between commensal bacteria and the central and peripheral nervous systems is associated with alterations in signaling of neurotransmitters and neuropeptides such as dopamine, brain-derived neurotrophic factor (BDNF), and glucagon-like peptide-1 (GLP-1). We further consider areas for future research on mechanisms by which gut microbes may influence feeding behavior involving these neural pathways. Understanding roles for the gut microbiota in feeding regulation will be important for informing therapeutic strategies to treat metabolic and eating disorders.

Authors

Kristie B. Yu, Elaine Y. Hsiao

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 1,723 427
PDF 234 106
Figure 161 2
Table 100 0
Citation downloads 88 0
Totals 2,306 535
Total Views 2,841
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Blogged by 1
Posted by 33 X users
On 1 Facebook pages
90 readers on Mendeley
See more details