Pituitary hyperplasia and lactotroph replication are induced by estrogen. The product of the pituitary tumor transforming gene (PTTG) exhibits in vitro and in vivo transforming activity and induces basic bFGF secretion, thereby modulating pituitary angiogenesis and tumor formation. We demonstrated previously that pituitary pttg is induced by estrogen and bFGF, the latter being expressed in a concordant fashion with pttg in experimental and human pituitary adenomas. We now elucidate the role of estrogen in paracrine regulation of pituitary tumorigenesis by PTTG. Coincident with the circulating rat estradiol surge and maximal pituitary proliferation, pituitary pttg mRNA, bFGF, and VEGF expression increased approximately threefold during proestrus and estrus. Osmotic mini-pump coinfusion of estrogen and antiestrogen abrogated estrogen-induced pituitary pttg expression in vivo, suppressed serum PRL concentrations by 88%, and attenuated prolactin-secreting pituitary tumor growth by 41% in rats. Antiestrogen treatment of primary human pituitary tumor cultures reduced PTTG expression approximately 65%. Pituitary pttg, bFGF, and VEGF are cyclically expressed during the rat estrus cycle, concordantly with estrogen levels. Because anti-estrogens reduced PTTG expression in human pituitary tumors in vitro and suppressed experimental tumor growth in vivo, concomitantly with reduced PRL secretion, these results indicate a role for selective antiestrogens in treating pituitary tumors.
Anthony P. Heaney, Manory Fernando, Shlomo Melmed
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 402 | 724 |
133 | 40 | |
Figure | 238 | 13 |
Citation downloads | 36 | 0 |
Totals | 809 | 777 |
Total Views | 1,586 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.