Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Integrative methylome-transcriptome analysis unravels cancer cell vulnerabilities in infant MLL-rearranged B cell acute lymphoblastic leukemia
Juan Ramón Tejedor, … , Agustín F. Fernández, Pablo Menéndez
Juan Ramón Tejedor, … , Agustín F. Fernández, Pablo Menéndez
Published May 13, 2021
Citation Information: J Clin Invest. 2021;131(13):e138833. https://doi.org/10.1172/JCI138833.
View: Text | PDF
Research Article Genetics Oncology Article has an altmetric score of 29

Integrative methylome-transcriptome analysis unravels cancer cell vulnerabilities in infant MLL-rearranged B cell acute lymphoblastic leukemia

  • Text
  • PDF
Abstract

B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. As predicted by its prenatal origin, infant B-ALL (iB-ALL) shows an exceptionally silent DNA mutational landscape, suggesting that alternative epigenetic mechanisms may substantially contribute to its leukemogenesis. Here, we have integrated genome-wide DNA methylome and transcriptome data from 69 patients with de novo MLL-rearranged leukemia (MLLr) and non-MLLr iB-ALL leukemia uniformly treated according to the Interfant-99/06 protocol. iB-ALL methylome signatures display a plethora of common and specific alterations associated with chromatin states related to enhancer and transcriptional control in normal hematopoietic cells. DNA methylation, gene expression, and gene coexpression network analyses segregated MLLr away from non-MLLr iB-ALL and identified a coordinated and enriched expression of the AP-1 complex members FOS and JUN and RUNX factors in MLLr iB-ALL, consistent with the significant enrichment of hypomethylated CpGs in these genes. Integrative methylome-transcriptome analysis identified consistent cancer cell vulnerabilities, revealed a robust iB-ALL–specific gene expression–correlating dmCpG signature, and confirmed an epigenetic control of AP-1 and RUNX members in reshaping the molecular network of MLLr iB-ALL. Finally, pharmacological inhibition or functional ablation of AP-1 dramatically impaired MLLr-leukemic growth in vitro and in vivo using MLLr-iB-ALL patient–derived xenografts, providing rationale for new therapeutic avenues in MLLr-iB-ALL.

Authors

Juan Ramón Tejedor, Clara Bueno, Meritxell Vinyoles, Paolo Petazzi, Antonio Agraz-Doblas, Isabel Cobo, Raúl Torres-Ruiz, Gustavo F. Bayón, Raúl F. Pérez, Sara López-Tamargo, Francisco Gutierrez-Agüera, Pablo Santamarina-Ojeda, Manuel Ramírez-Orellana, Michela Bardini, Giovanni Cazzaniga, Paola Ballerini, Pauline Schneider, Ronald W. Stam, Ignacio Varela, Mario F. Fraga, Agustín F. Fernández, Pablo Menéndez

×

Figure 2

Identification of differentially methylated sites in iB-ALL subgroups.

Options: View larger image (or click on image) Download as PowerPoint
Identification of differentially methylated sites in iB-ALL subgroups.
(...
(A) Schematic indicating the number of samples analyzed with the Human MethylationEPIC microarray platform. (B) PCA for 758,932 CpG sites across all samples included in the DNA methylation study. (C) Heatmap representation depicting the methylation status of the 10,000 most variable CpG sites (y axis) for the different iB-ALL samples, BCPs, and naive B cells (x axis). (D) Barplot displaying the number of common (black) and specific (colored) significantly hyper- or hypomethylated CpG sites observed in the indicated comparisons (FDR < 0.05, mean β difference > 0.25). Venn diagram represents the number of overlapping dmCpGs between naive B cells and iB-ALL (β > 0.25). dmCpGs overlapping naive B cells and iB-ALL samples were discarded for downstream analyses because they represent methylation changes naturally occurring during B cell differentiation. The inset shows the total number of hyper- and hypomethylated CpG sites observed in each condition. (E) Pairwise Pearson’s correlation analysis indicating the degree of similarity between the different sample groups. A total of 77,596 dmCpGs observed at any iB-ALL vs. BCP condition were used for proper comparisons, and all comparisons were statistically significant (P < 0.001).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 2 news outlets
Posted by 15 X users
44 readers on Mendeley
See more details