Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Severe consequences of a high-lipid diet include hydrogen sulfide dysfunction and enhanced aggression in glioblastoma
Daniel J. Silver, … , Christopher Hine, Justin D. Lathia
Daniel J. Silver, … , Christopher Hine, Justin D. Lathia
Published July 13, 2021
Citation Information: J Clin Invest. 2021;131(17):e138276. https://doi.org/10.1172/JCI138276.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 17

Severe consequences of a high-lipid diet include hydrogen sulfide dysfunction and enhanced aggression in glioblastoma

  • Text
  • PDF
Abstract

Glioblastoma (GBM) remains among the deadliest of human malignancies, and the emergence of the cancer stem cell (CSC) phenotype represents a major challenge to durable treatment response. Because the environmental and lifestyle factors that impact CSC populations are not clear, we sought to understand the consequences of diet on CSC enrichment. We evaluated disease progression in mice fed an obesity-inducing high-fat diet (HFD) versus a low-fat, control diet. HFD resulted in hyperaggressive disease accompanied by CSC enrichment and shortened survival. HFD drove intracerebral accumulation of saturated fats, which inhibited the production of the cysteine metabolite and gasotransmitter, hydrogen sulfide (H2S). H2S functions principally through protein S-sulfhydration and regulates multiple programs, including bioenergetics and metabolism. Inhibition of H2S increased proliferation and chemotherapy resistance, whereas treatment with H2S donors led to death of cultured GBM cells and stasis of GBM tumors in vivo. Syngeneic GBM models and GBM patient specimens present an overall reduction in protein S-sulfhydration, primarily associated with proteins regulating cellular metabolism. These findings provide clear evidence that diet-modifiable H2S signaling serves to suppress GBM by restricting metabolic fitness, while its loss triggers CSC enrichment and disease acceleration. Interventions augmenting H2S bioavailability concurrent with GBM standard of care may improve outcomes for patients with GBM.

Authors

Daniel J. Silver, Gustavo A. Roversi, Nazmin Bithi, Sabrina Z. Wang, Katie M. Troike, Chase K.A. Neumann, Grace K. Ahuja, Ofer Reizes, J. Mark Brown, Christopher Hine, Justin D. Lathia

×

Figure 4

Inhibition of H2S production results in GBM tumor cell hyperproliferation.

Options: View larger image (or click on image) Download as PowerPoint
Inhibition of H2S production results in GBM tumor cell hyperproliferatio...
(A) Schematic detailing how each chemical agent modifies production of H2S. (B–D) CellTiter Glo viability analysis confirmed that in vitro treatment with the CGL-selective inhibitor PAG increased GL261, KR158, and CT2A tumor cell viability compared with vehicle controls. P value determined by 2-way ANOVA. (E–G) H2S supplementation using the chemical donor sodium hydrosulfide (NaHS) or GYY 4137 resulted in selective viability reduction for human (hGBM 23) tumor cells compared with the non-GBM (NCTC 1469) liver cell line. IC50 values were determined based on nonlinear regression analysis. While representative IC50 curves for hGBM 23 and NCTC 1469 are depicted here, IC50 concentrations were determined for a total of 3 human GBM specimens, 2 syngeneic GBM specimens, and 2 non-GBM cell lines (Supplemental Figure 6).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 30 X users
47 readers on Mendeley
See more details