Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Impaired complex I repair causes recessive Leber’s hereditary optic neuropathy
Sarah L. Stenton, … , Ilka Wittig, Holger Prokisch
Sarah L. Stenton, … , Ilka Wittig, Holger Prokisch
Published January 19, 2021
Citation Information: J Clin Invest. 2021;131(6):e138267. https://doi.org/10.1172/JCI138267.
View: Text | PDF
Research Article Genetics Neuroscience

Impaired complex I repair causes recessive Leber’s hereditary optic neuropathy

  • Text
  • PDF
Abstract

Leber’s hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit–encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits.

Authors

Sarah L. Stenton, Natalia L. Sheremet, Claudia B. Catarino, Natalia A. Andreeva, Zahra Assouline, Piero Barboni, Ortal Barel, Riccardo Berutti, Igor Bychkov, Leonardo Caporali, Mariantonietta Capristo, Michele Carbonelli, Maria L. Cascavilla, Peter Charbel Issa, Peter Freisinger, Sylvie Gerber, Daniele Ghezzi, Elisabeth Graf, Juliana Heidler, Maja Hempel, Elise Heon, Yulya S. Itkis, Elisheva Javasky, Josseline Kaplan, Robert Kopajtich, Cornelia Kornblum, Reka Kovacs-Nagy, Tatiana D. Krylova, Wolfram S. Kunz, Chiara La Morgia, Costanza Lamperti, Christina Ludwig, Pedro F. Malacarne, Alessandra Maresca, Johannes A. Mayr, Jana Meisterknecht, Tatiana A. Nevinitsyna, Flavia Palombo, Ben Pode-Shakked, Maria S. Shmelkova, Tim M. Strom, Francesca Tagliavini, Michal Tzadok, Amelie T. van der Ven, Catherine Vignal-Clermont, Matias Wagner, Ekaterina Y. Zakharova, Nino V. Zhorzholadze, Jean-Michel Rozet, Valerio Carelli, Polina G. Tsygankova, Thomas Klopstock, Ilka Wittig, Holger Prokisch

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 1,156 343
PDF 144 91
Figure 246 7
Table 115 0
Supplemental data 129 20
Citation downloads 71 0
Totals 1,861 461
Total Views 2,322
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts