Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Metabolic effects of air pollution exposure and reversibility
Sanjay Rajagopalan, … , Kasper D. Hansen, Shyam Biswal
Sanjay Rajagopalan, … , Kasper D. Hansen, Shyam Biswal
Published August 11, 2020
Citation Information: J Clin Invest. 2020;130(11):6034-6040. https://doi.org/10.1172/JCI137315.
View: Text | PDF
Concise Communication Endocrinology Metabolism Article has an altmetric score of 525

Metabolic effects of air pollution exposure and reversibility

  • Text
  • PDF
Abstract

Air pollution involving particulate matter smaller than 2.5 μm in size (PM2.5) is the world’s leading environmental risk factor contributing to mortality through cardiometabolic pathways. In this study, we modeled early life exposure using chow-fed C57BL/6J male mice that were exposed to real-world inhaled, concentrated PM2.5 (~10 times ambient levels/~60–120 μg/m3) or filtered air over a 14-week period. We investigated the effects of PM2.5 on phenotype, the transcriptome, and chromatin accessibility and compared these with the effects of a prototypical high-fat diet (HFD) as well as cessation of exposure on phenotype reversibility. Exposure to PM2.5 impaired glucose and insulin tolerance and reduced energy expenditure and 18FDG-PET uptake in brown adipose tissue. Multiple differentially expressed gene clusters in pathways involving metabolism and circadian rhythm were noted in insulin-responsive tissues. Although the magnitude of transcriptional change detected with PM2.5 exposure was lower than that observed with a HFD, the degree of alteration in chromatin accessibility after PM2.5 exposure was significant. The novel chromatin remodeler SMARCA5 (SWI/SNF complex) was regulated in response to PM2.5 exposure, the cessation of which was associated with a reversal of insulin resistance and restoration of chromatin accessibility and nucleosome positioning near transcription start sites, as well as a reversal of exposure-induced changes in the transcriptome, including SMARCA5. These changes indicate pliable epigenetic control mechanisms following cessation of exposure.

Authors

Sanjay Rajagopalan, Bongsoo Park, Rengasamy Palanivel, Vinesh Vinayachandran, Jeffrey A. Deiuliis, Roopesh Singh Gangwar, Lopa Das, Jinhu Yin, Youngshim Choi, Sadeer Al-Kindi, Mukesh K. Jain, Kasper D. Hansen, Shyam Biswal

×

Figure 4

Impact of exposure cessation versus continued PM2.5 exposure in liver.

Options: View larger image (or click on image) Download as PowerPoint
Impact of exposure cessation versus continued PM2.5 exposure in liver.
(...
(A) Comparison of GTTs and ITTs, as represented by the AUC, in FA-, PM2.5-, and HFD-exposed mice at the indicated time points. Dashed line indicates the cessation of exposure at 14 weeks. (B) Heatmap of liver and WAT DEGs by week 8 after PM2.5 exposure cessation (14–22 weeks). (C) Volcano plot of the WAT transcriptome at 14 weeks and scatter plot of the DEG fold change distribution showing a reversal of highly upregulated genes in PM2.5-exposed mice. (D) Differential transcription factor binding analysis using ATAC-Seq data sets and the reversal of SMARCA5 binding profiles (PM2.5 vs. cessation). (E) Quantitative assessment summarizing normalized transcript values for 2 select genes (Rgs16 and Nr4a1) across mouse samples. FPKM, fragments per kilobase per million mapped reads. (F) Summary of reversible DARs and genomic regions.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 35 news outlets
Blogged by 1
Posted by 340 X users
On 2 Facebook pages
Reddited by 1
62 readers on Mendeley
See more details