Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
TRPV4 helps Piezo1 put the squeeze on pancreatic acinar cells
Fred Gorelick, Michael H. Nathanson
Fred Gorelick, Michael H. Nathanson
Published April 13, 2020
Citation Information: J Clin Invest. 2020;130(5):2199-2201. https://doi.org/10.1172/JCI136525.
View: Text | PDF
Commentary Article has an altmetric score of 1

TRPV4 helps Piezo1 put the squeeze on pancreatic acinar cells

  • Text
  • PDF
Abstract

Alterations in calcium signaling in pancreatic acinar cells can result in pancreatitis. Although pressure changes in the pancreas can elevate cytosolic calcium (Ca2+) levels, it is not known how transient pressure-activated elevations in calcium can cause prolonged calcium changes and consequent pancreatitis. In this issue of the JCI, Swain et al. describe roles for the mechanically activated plasma membrane calcium channels Piezo1 and transient receptor potential vanilloid subfamily 4 (TRPV4) in acinar cells. The authors used genetic deletion models and cell culture systems to investigate calcium signaling. Notably, activation of the Piezo1-dependent TRPV4 pathway was independent of the cholecystokinin (CCK) stimulation pathway. These results elegantly resolve an apparent discrepancy in calcium signaling and the pathogenesis of pancreatitis in pancreatic acinar cells.

Authors

Fred Gorelick, Michael H. Nathanson

×

Full Text PDF

Download PDF (1.46 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
11 readers on Mendeley
See more details