Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
BCL-2 antagonism sensitizes cytotoxic T cell–resistant HIV reservoirs to elimination ex vivo
Yanqin Ren, … , Catherine M. Bollard, R. Brad Jones
Yanqin Ren, … , Catherine M. Bollard, R. Brad Jones
Published February 6, 2020
Citation Information: J Clin Invest. 2020;130(5):2542-2559. https://doi.org/10.1172/JCI132374.
View: Text | PDF
Research Article AIDS/HIV Immunology Article has an altmetric score of 14

BCL-2 antagonism sensitizes cytotoxic T cell–resistant HIV reservoirs to elimination ex vivo

  • Text
  • PDF
Abstract

Curing HIV infection will require the elimination of a reservoir of infected CD4+ T cells that persists despite HIV-specific cytotoxic T cell (CTL) responses. Although viral latency is a critical factor in this persistence, recent evidence also suggests a role for intrinsic resistance of reservoir-harboring cells to CTL killing. This resistance may have contributed to negative outcomes of clinical trials, where pharmacologic latency reversal has thus far failed to drive reductions in HIV reservoirs. Through transcriptional profiling, we herein identified overexpression of the prosurvival factor B cell lymphoma 2 (BCL-2) as a distinguishing feature of CD4+ T cells that survived CTL killing. We show that the inducible HIV reservoir was disproportionately present in BCL-2hi subsets in ex vivo CD4+ T cells. Treatment with the BCL-2 antagonist ABT-199 was not sufficient to drive reductions in ex vivo viral reservoirs when tested either alone or with a latency-reversing agent (LRA). However, the triple combination of strong LRAs, HIV-specific T cells, and a BCL-2 antagonist uniquely enabled the depletion of ex vivo viral reservoirs. Our results provide rationale for novel therapeutic approaches targeting HIV cure and, more generally, suggest consideration of BCL-2 antagonism as a means of enhancing CTL immunotherapy in other settings, such as cancer.

Authors

Yanqin Ren, Szu Han Huang, Shabnum Patel, Winiffer D. Conce Alberto, Dean Magat, Dughan Ahimovic, Amanda B. Macedo, Ryan Durga, Dora Chan, Elizabeth Zale, Talia M. Mota, Ronald Truong, Thomas Rohwetter, Chase D. McCann, Colin M. Kovacs, Erika Benko, Avery Wimpelberg, Christopher Cannon, W. David Hardy, Alberto Bosque, Catherine M. Bollard, R. Brad Jones

×

Figure 1

Transcriptional profiling of target CD4+ T cells that survive CTL coculture reveals candidate mechanisms of resistance.

Options: View larger image (or click on image) Download as PowerPoint
Transcriptional profiling of target CD4+ T cells that survive CTL cocult...
(A) Schematic of peptide-pulse killing assay and flow sorting for transcriptional profiling. (B) PCA showing clustering of cell populations, as indicated. (C) IPA results showing the pathways that were significantly enriched between real bystanders and real survivors. Orange bars, positive Z scores; blue bars, negative Z scores; gray bars, no activity pattern. (D) Top 6 genes by numbers of instances in significant pathways from C. (E) IPA network analysis (subcellular display) showing a significantly enriched network. Interactions with significant pathways from C and with CTL–mediated apoptosis of target cells are also shown. Red shading indicates overexpression in real survivors, and green indicates underexpression, both in comparison with real bystanders. (F) BCL-2 as well as upstream (CASP2) and downstream (PARP) gene expression levels in all 4 conditions. Shown are fragments per kilobase of exon model per million mapped reads (FPKM) from RNA-Seq. FDR-adjusted P values from DESeq analysis are shown.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 15 X users
Referenced in 3 patents
85 readers on Mendeley
See more details