Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Accelerated apoptosis in the Timp-3–deficient mammary gland
Jimmie E. Fata, … , Roger A. Moorehead, Rama Khokha
Jimmie E. Fata, … , Roger A. Moorehead, Rama Khokha
Published September 15, 2001
Citation Information: J Clin Invest. 2001;108(6):831-841. https://doi.org/10.1172/JCI13171.
View: Text | PDF | Corrigendum
Article

Accelerated apoptosis in the Timp-3–deficient mammary gland

  • Text
  • PDF
Abstract

The proapoptotic proteinase inhibitor TIMP-3 is the only molecule of this family thought to influence cell death. We examined epithelial apoptosis in TIMP-3–deficient mice during mammary gland involution. Lactation was not affected by the absence of TIMP-3, but glandular function, as measured by gland-to-body weight ratio and production of β-casein, was suppressed earlier during post-lactational involution than in controls. Histological examination revealed accelerated lumen collapse, alveolar-epithelial loss, and adipose reconstitution in Timp-3–/– females. Epithelial apoptosis peaked on the first day of involution in Timp-3–null glands but at day 3 in wild-type littermates. Unscheduled activation of gelatinase-A was evident by zymography and correlated with earlier fragmentation of fibronectin in Timp-3–/– mammary. To obtain independent evidence of the proapoptotic effects of TIMP-3 deficiency, we introduced recombinant TIMP-3–releasing pellets into regressing Timp-3–/– mammary tissue and showed that this treatment rescued lumen collapse and epithelial apoptosis. Ex vivo, involuting Timp-3–/– mammary tissue demonstrated accelerated epithelial apoptosis that could be reduced by metalloproteinase inhibition. The physiological relevance of TIMP-3 became apparent as Timp-3–/– dams failed to reestablish lactation after brief cessation of suckling. Thus, TIMP-3 is a critical epithelial survival factor during mammary gland involution.

Authors

Jimmie E. Fata, Kevin J. Leco, Evelyn B. Voura, Hoi-Ying E. Yu, Paul Waterhouse, Gillian Murphy, Roger A. Moorehead, Rama Khokha

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 1,035 36
PDF 130 15
Figure 483 7
Citation downloads 96 0
Totals 1,744 58
Total Views 1,802
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts