Increases in the number of cell therapies in the preclinical and clinical phases have prompted the need for reliable and noninvasive assays to validate transplant function in clinical biomanufacturing. We developed a robust characterization methodology composed of quantitative bright-field absorbance microscopy (QBAM) and deep neural networks (DNNs) to noninvasively predict tissue function and cellular donor identity. The methodology was validated using clinical-grade induced pluripotent stem cell–derived retinal pigment epithelial cells (iPSC-RPE). QBAM images of iPSC-RPE were used to train DNNs that predicted iPSC-RPE monolayer transepithelial resistance, predicted polarized vascular endothelial growth factor (VEGF) secretion, and matched iPSC-RPE monolayers to the stem cell donors. DNN predictions were supplemented with traditional machine-learning algorithms that identified shape and texture features of single cells that were used to predict tissue function and iPSC donor identity. These results demonstrate noninvasive cell therapy characterization can be achieved with QBAM and machine learning.
Nicholas J. Schaub, Nathan A. Hotaling, Petre Manescu, Sarala Padi, Qin Wan, Ruchi Sharma, Aman George, Joe Chalfoun, Mylene Simon, Mohamed Ouladi, Carl G. Simon Jr., Peter Bajcsy, Kapil Bharti
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,152 | 176 |
387 | 66 | |
Figure | 516 | 8 |
Table | 287 | 0 |
Supplemental data | 88 | 16 |
Citation downloads | 80 | 0 |
Totals | 2,510 | 266 |
Total Views | 2,776 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.