The equilibrium of signaling through activating and inhibitory receptors dictates whether a given NK cell will execute cellular cytotoxicity. In this issue of the JCI, Kamiya et al. describe a novel approach to efficiently inhibiting surface expression of the inhibitory receptor CD94/NK group 2 member A (NKG2A) through retention of the protein in the endoplasmic reticulum. In adoptive transfer experiments into tumor-bearing immunodeficient mice, NKG2Anull NK cells were significantly more effective at eliminating HLA-E–expressing tumor cells than NKG2A+ NK cells. This study provides proof of concept for a new immunotherapeutic approach using NKG2Anull NK cells.
Frank Cichocki, Jeffrey S. Miller
Trapping NKG2A in the ER enhances NK cell cytotoxicity against HLA-E–expressing tumors.