Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dengue virus–elicited tryptase induces endothelial permeability and shock
Abhay P.S. Rathore, … , Duane J. Gubler, Ashley L. St. John
Abhay P.S. Rathore, … , Duane J. Gubler, Ashley L. St. John
Published July 2, 2019
Citation Information: J Clin Invest. 2019;129(10):4180-4193. https://doi.org/10.1172/JCI128426.
View: Text | PDF
Research Article Infectious disease Vascular biology

Dengue virus–elicited tryptase induces endothelial permeability and shock

  • Text
  • PDF
Abstract

Dengue virus (DENV) infection causes a characteristic pathology in humans involving dysregulation of the vascular system. In some patients with dengue hemorrhagic fever (DHF), vascular pathology can become severe, resulting in extensive microvascular permeability and plasma leakage into tissues and organs. Mast cells (MCs), which line blood vessels and regulate vascular function, are able to detect DENV in vivo and promote vascular leakage. Here, we showed that an MC-derived protease, tryptase, is consequential for promoting vascular permeability during DENV infection through inducing breakdown of endothelial cell tight junctions. Injected tryptase alone was sufficient to induce plasma loss from the circulation and hypovolemic shock in animals. A potent tryptase inhibitor, nafamostat mesylate, blocked DENV-induced vascular leakage in vivo. Importantly, in 2 independent human dengue cohorts, tryptase levels correlated with the grade of DHF severity. This study defines an immune mechanism by which DENV can induce vascular pathology and shock.

Authors

Abhay P.S. Rathore, Chinmay Kumar Mantri, Siti A.B. Aman, Ayesa Syenina, Justin Ooi, Cyril J. Jagaraj, Chi Ching Goh, Hasitha Tissera, Annelies Wilder-Smith, Lai Guan Ng, Duane J. Gubler, Ashley L. St. John

×

Figure 2

MC proteases promote vascular leakage and shock in vivo.

Options: View larger image (or click on image) Download as PowerPoint
MC proteases promote vascular leakage and shock in vivo.
(A) Hematocrit ...
(A) Hematocrit values were obtained 6 hours after injection with saline alone or 30 ng of either tryptase, chymase, or OVA. Means differ significantly by 1-way ANOVA (P < 0.0001). Bonferroni’s multiple comparison test was used to determine significance among groups. Control, n = 15; tryptase and chymase, n = 10; OVA, n = 5. Data were added from 2 independent experiments. (B and C) Mice (n = 3–4) were injected with 30 ng each of tryptase, chymase, or OVA i.v., or an equivalent volume of saline was injected for controls. To measure shock, the body temperature of animals was recorded every 5 minutes for the first 15 minutes and subsequently at 10-minute intervals. (B) Both tryptase and chymase caused sudden drops in body temperature, indicative of shock, compared with both OVA and saline control groups. Data were analyzed by 2-way ANOVA with Holm-Šidák multiple comparison test to compare temperatures at each time point. (C) The maximal difference in temperature during the time course is presented, suggesting that tryptase treatment causes significantly higher plasma loss in animals compared with chymase, OVA, and saline control groups, determined by 1-way ANOVA with Holm-Šidák multiple comparison test. Data are shown as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts