Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Tumor cell–intrinsic EPHA2 suppresses antitumor immunity by regulating PTGS2 (COX-2)
Nune Markosyan, … , Ben Z. Stanger, Robert H. Vonderheide
Nune Markosyan, … , Ben Z. Stanger, Robert H. Vonderheide
Published June 4, 2019
Citation Information: J Clin Invest. 2019;129(9):3594-3609. https://doi.org/10.1172/JCI127755.
View: Text | PDF
Research Article Immunology Oncology

Tumor cell–intrinsic EPHA2 suppresses antitumor immunity by regulating PTGS2 (COX-2)

  • Text
  • PDF
Abstract

Resistance to immunotherapy is one of the biggest problems of current oncotherapeutics. While T cell abundance is essential for tumor responsiveness to immunotherapy, factors that define the T cell–inflamed tumor microenvironment are not fully understood. We used an unbiased approach to identify tumor-intrinsic mechanisms shaping the immune tumor microenvironment (TME), focusing on pancreatic adenocarcinoma because it is refractory to immunotherapy and excludes T cells from the TME. From human tumors, we identified ephrin-A receptor 2 (EPHA2) as a candidate tumor-intrinsic driver of immunosuppression. Epha2 deletion reversed T cell exclusion and sensitized tumors to immunotherapy. We found that prostaglandin endoperoxide synthase 2 (PTGS2), the gene encoding cyclooxygenase-2, lies downstream of EPHA2 signaling through TGF-β and is associated with poor patient survival. Ptgs2 deletion reversed T cell exclusion and sensitized tumors to immunotherapy; pharmacological inhibition of PTGS2 was similarly effective. Thus, EPHA2/PTGS2 signaling in tumor cells regulates tumor immune phenotypes; blockade may represent a therapeutic avenue for immunotherapy-refractory cancers. Our findings warrant clinical trials testing the effectiveness of therapies combining EPHA2/TGF-β/PTGS2 pathway inhibitors with antitumor immunotherapy and may change the treatment of notoriously therapy-resistant pancreatic adenocarcinoma.

Authors

Nune Markosyan, Jinyang Li, Yu H. Sun, Lee P. Richman, Jeffrey H. Lin, Fangxue Yan, Liz Quinones, Yogev Sela, Taiji Yamazoe, Naomi Gordon, John W. Tobias, Katelyn T. Byrne, Andrew J. Rech, Garret A. FitzGerald, Ben Z. Stanger, Robert H. Vonderheide

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 1,295 377
PDF 190 65
Figure 555 9
Supplemental data 67 16
Citation downloads 116 0
Totals 2,223 467
Total Views 2,690
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts