Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Navigating the Fas lane to improved cellular therapy for cancer
Madhav V. Dhodapkar
Madhav V. Dhodapkar
Published February 25, 2019
Citation Information: J Clin Invest. 2019;129(4):1522-1523. https://doi.org/10.1172/JCI127581.
View: Text | PDF
Commentary

Navigating the Fas lane to improved cellular therapy for cancer

  • Text
  • PDF
Abstract

Genetically engineered T cells have shown promising activity in the treatment of cancer. However, these cells are also potentially susceptible to immune-suppressive pathways in the tumor microenvironment that may limit their efficacy. In this issue of the JCI, Yamamoto et al. describe a new cellular engineering approach to prevent Fas-mediated inhibition of T cell function, which may be exploited to improve cellular therapy for cancer.

Authors

Madhav V. Dhodapkar

×

Figure 1

Schematic representation of Fas signaling in tumor cells during CAR T cell therapy.

Options: View larger image (or click on image) Download as PowerPoint
Schematic representation of Fas signaling in tumor cells during CAR T ce...
(A) FasL-mediated inhibition of adoptive cell transfer. The apoptosis-inducing ligand FasL is preferentially expressed on tumor cells. T cells used for adoptive immunotherapy constitutively express Fas, the receptor for FasL. Cognate Fas-FasL interaction limits T cell persistence and ultimately affects antitumor efficacy. (B) Overcoming FasL-mediated inhibition. Genetically engineered dominant-negative Fas variants impair Fas-FasL binding and prevent FasL-induced apoptosis. This leads to longer persistence of T cells and to better tumor regression and enhanced survival. Figure illustrated by Rachel Davidowitz.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts