Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Aberrant splicing contributes to severe α-spectrin–linked congenital hemolytic anemia
Patrick G. Gallagher, … , Susan J. Baserga, Vincent P. Schulz
Patrick G. Gallagher, … , Susan J. Baserga, Vincent P. Schulz
Published April 30, 2019
Citation Information: J Clin Invest. 2019;129(7):2878-2887. https://doi.org/10.1172/JCI127195.
View: Text | PDF
Research Article Genetics Hematology Article has an altmetric score of 29

Aberrant splicing contributes to severe α-spectrin–linked congenital hemolytic anemia

  • Text
  • PDF
Abstract

The etiology of severe hemolytic anemia in most patients with recessive hereditary spherocytosis (rHS) and the related disorder hereditary pyropoikilocytosis (HPP) is unknown. Whole-exome sequencing of DNA from probands of 24 rHS or HPP kindreds identified numerous mutations in erythrocyte membrane α-spectrin (SPTA1). Twenty-eight mutations were novel, with null alleles frequently found in trans to missense mutations. No mutations were identified in a third of SPTA1 alleles (17/48). WGS revealed linkage disequilibrium between the common rHS-linked αBH polymorphism and a rare intron 30 variant in all 17 mutation-negative alleles. In vitro minigene studies and in vivo splicing analyses revealed the intron 30 variant changes a weak alternate branch point (BP) to a strong BP. This change leads to increased utilization of an alternate 3′ splice acceptor site, perturbing normal α-spectrin mRNA splicing and creating an elongated mRNA transcript. In vivo mRNA stability studies revealed the newly created termination codon in the elongated transcript activates nonsense-mediated decay leading to spectrin deficiency. These results demonstrate that a unique mechanism of human genetic disease contributes to the etiology of a third of rHS cases, facilitating diagnosis and treatment of severe anemia and identifying a new target for therapeutic manipulation.

Authors

Patrick G. Gallagher, Yelena Maksimova, Kimberly Lezon-Geyda, Peter E. Newburger, Desiree Medeiros, Robin D. Hanson, Jennifer Rothman, Sara Israels, Donna A. Wall, Robert F. Sidonio Jr., Colin Sieff, L. Kate Gowans, Nupur Mittal, Roland Rivera-Santiago, David W. Speicher, Susan J. Baserga, Vincent P. Schulz

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 729 291
PDF 124 78
Figure 247 9
Table 76 0
Supplemental data 70 36
Citation downloads 92 0
Totals 1,338 414
Total Views 1,752
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 3 news outlets
Posted by 2 X users
On 1 Facebook pages
Referenced in 1 clinical guideline sources
28 readers on Mendeley
See more details