Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Aberrant splicing contributes to severe α-spectrin–linked congenital hemolytic anemia
Patrick G. Gallagher, … , Susan J. Baserga, Vincent P. Schulz
Patrick G. Gallagher, … , Susan J. Baserga, Vincent P. Schulz
Published April 30, 2019
Citation Information: J Clin Invest. 2019;129(7):2878-2887. https://doi.org/10.1172/JCI127195.
View: Text | PDF
Research Article Genetics Hematology

Aberrant splicing contributes to severe α-spectrin–linked congenital hemolytic anemia

  • Text
  • PDF
Abstract

The etiology of severe hemolytic anemia in most patients with recessive hereditary spherocytosis (rHS) and the related disorder hereditary pyropoikilocytosis (HPP) is unknown. Whole-exome sequencing of DNA from probands of 24 rHS or HPP kindreds identified numerous mutations in erythrocyte membrane α-spectrin (SPTA1). Twenty-eight mutations were novel, with null alleles frequently found in trans to missense mutations. No mutations were identified in a third of SPTA1 alleles (17/48). WGS revealed linkage disequilibrium between the common rHS-linked αBH polymorphism and a rare intron 30 variant in all 17 mutation-negative alleles. In vitro minigene studies and in vivo splicing analyses revealed the intron 30 variant changes a weak alternate branch point (BP) to a strong BP. This change leads to increased utilization of an alternate 3′ splice acceptor site, perturbing normal α-spectrin mRNA splicing and creating an elongated mRNA transcript. In vivo mRNA stability studies revealed the newly created termination codon in the elongated transcript activates nonsense-mediated decay leading to spectrin deficiency. These results demonstrate that a unique mechanism of human genetic disease contributes to the etiology of a third of rHS cases, facilitating diagnosis and treatment of severe anemia and identifying a new target for therapeutic manipulation.

Authors

Patrick G. Gallagher, Yelena Maksimova, Kimberly Lezon-Geyda, Peter E. Newburger, Desiree Medeiros, Robin D. Hanson, Jennifer Rothman, Sara Israels, Donna A. Wall, Robert F. Sidonio Jr., Colin Sieff, L. Kate Gowans, Nupur Mittal, Roland Rivera-Santiago, David W. Speicher, Susan J. Baserga, Vincent P. Schulz

×

Figure 4

Minigene studies of α-spectrin intron 30 and the αLEPRA variant.

Options: View larger image (or click on image) Download as PowerPoint
Minigene studies of α-spectrin intron 30 and the αLEPRA variant.
(A) Par...
(A) Partial sequence of intron 30 of the SPTA1 gene, showing the location of the αLEPRA variant. (B) Each minigene construct used in minigene assays includes the ANK1 erythroid promoter, a fragment of SPTA1 genomic DNA inserted into intron 2 of the HBG1 gene, and the HBG1 3′ untranslated region and polyA signal. The hybrid HBG1-SPTA1 transcripts derived from minigenes are shown, either WT or elongated, with the locations of Taqman probes utilized to detect total spectrin (T bar) or the unique insert of the elongated transcript (E bar). (C) Minigene results. The specific sequences utilized in minigene constructs are shown. Percentages of elongated α-spectrin transcript over total α-spectrin transcript are shown in the second column from right. The adjusted P value of the difference from WT is shown on the right.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts