Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Transcriptional frameshifts contribute to protein allergenicity
Benoit Thouvenot, … , Claude Favrot, Bernard E. Bihain
Benoit Thouvenot, … , Claude Favrot, Bernard E. Bihain
Published July 7, 2020
Citation Information: J Clin Invest. 2020;130(10):5477-5492. https://doi.org/10.1172/JCI126275.
View: Text | PDF
Research Article Immunology Article has an altmetric score of 13

Transcriptional frameshifts contribute to protein allergenicity

  • Text
  • PDF
Abstract

Transcription infidelity (TI) is a mechanism that increases RNA and protein diversity. We found that single-base omissions (i.e., gaps) occurred at significantly higher rates in the RNA of highly allergenic legumes. Transcripts from peanut, soybean, sesame, and mite allergens contained a higher density of gaps than those of nonallergens. Allergen transcripts translate into proteins with a cationic carboxy terminus depleted in hydrophobic residues. In mice, recombinant TI variants of the peanut allergen Ara h 2, but not the canonical allergen itself, induced, without adjuvant, the production of anaphylactogenic specific IgE (sIgE), binding to linear epitopes on both canonical and TI segments of the TI variants. The removal of cationic proteins from bovine lactoserum markedly reduced its capacity to induce sIgE. In peanut-allergic children, the sIgE reactivity was directed toward both canonical and TI segments of Ara h 2 variants. We discovered 2 peanut allergens, which we believe to be previously unreported, because of their RNA-DNA divergence gap patterns and TI peptide amino acid composition. Finally, we showed that the sIgE of children with IgE-negative milk allergy targeted cationic proteins in lactoserum. We propose that it is not the canonical allergens, but their TI variants, that initiate sIgE isotype switching, while both canonical and TI variants elicit clinical allergic reactions.

Authors

Benoit Thouvenot, Olivier Roitel, Julie Tomasina, Benoit Hilselberger, Christelle Richard, Sandrine Jacquenet, Françoise Codreanu-Morel, Martine Morisset, Gisèle Kanny, Etienne Beaudouin, Christine Delebarre-Sauvage, Thierry Olivry, Claude Favrot, Bernard E. Bihain

×

Figure 7

Discovery of 2 peanut allergens (NPA) using their TI profiles.

Options: View larger image (or click on image) Download as PowerPoint
Discovery of 2 peanut allergens (NPA) using their TI profiles.
(A) Genom...
(A) Genomic and protein sequence characteristics of NPA23. The table lists the known allergens with sequence similarity to NPA23 in the Allergome database. (B) First lanes on the left: Coomassie blue staining showing purified NPA23 protein (4 μg). The upper bands are believed to be NPA23 multimers. Center and rightmost lanes, IgE Western immunoblotting with sera of peanut-allergic and peanut-tolerant children (atopic and nonatopic controls). (C) sIgE directed toward recombinant NPA23 using sera of peanut-allergic (n = 52) and peanut-tolerant patients (atopic and nonatopic subjects; n = 44) measured by ELISA.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 9 X users
Referenced in 2 patents
On 1 Facebook pages
28 readers on Mendeley
See more details