BACKGROUND While the human fetal immune system defaults to a program of tolerance, there is a concurrent need for protective immunity to meet the antigenic challenges encountered after birth. Activation of T cells in utero is associated with the fetal inflammatory response, with broad implications for the health of the fetus and of the pregnancy. However, the characteristics of the fetal effector T cells that contribute to this process are largely unknown.METHODS We analyzed primary human fetal lymphoid and mucosal tissues and performed phenotypic, functional, and transcriptional analysis to identify T cells with proinflammatory potential. The frequency and function of fetal-specific effector T cells was assessed in the cord blood of infants with localized and systemic inflammatory pathologies and compared with that of healthy term controls.RESULTS We identified a transcriptionally distinct population of CD4+ T cells characterized by expression of the transcription factor promyelocytic leukemia zinc finger (PLZF). PLZF+CD4+ T cells were specifically enriched in the fetal intestine, possessed an effector memory phenotype, and rapidly produced proinflammatory cytokines. Engagement of the C-type lectin CD161 on these cells inhibited TCR-dependent production of IFN-γ in a fetal-specific manner. IFN-γ–producing PLZF+CD4+ T cells were enriched in the cord blood of infants with gastroschisis, a natural model of chronic inflammation originating from the intestine, as well as in preterm birth, suggesting these cells contribute to fetal systemic immune activation.CONCLUSION Our work reveals a fetal-specific program of protective immunity whose dysregulation is associated with fetal and neonatal inflammatory pathologies.FUNDING This work was supported by the UCSF Clinical and Translational Science Institute (CTSI) Pilot Award for Basic and Translational Investigators (2014908), UCSF (K12HD072222), the NIAID (K08 AI128007 and 1F31AI136336-01), a National Science Foundation (NSF) Graduate Research Fellowship (1650113 ), and an Academy for Medical Sciences Clinical Lecturer grant (535274).
Joanna Halkias, Elze Rackaityte, Sara L. Hillman, Dvir Aran, Ventura F. Mendoza, Lucy R. Marshall, Tippi C. MacKenzie, Trevor D. Burt
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,005 | 76 |
142 | 36 | |
Figure | 472 | 7 |
Supplemental data | 70 | 6 |
Citation downloads | 93 | 0 |
Totals | 1,782 | 125 |
Total Views | 1,907 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.