Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass
Nicolas Bonnet, … , Eleni Douni, Serge Ferrari
Nicolas Bonnet, … , Eleni Douni, Serge Ferrari
Published May 23, 2019
Citation Information: J Clin Invest. 2019;129(8):3214-3223. https://doi.org/10.1172/JCI125915.
View: Text | PDF | Corrigendum | Corrigendum
Research Article Bone biology Muscle biology Article has an altmetric score of 33

RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass

  • Text
  • PDF
Abstract

Receptor activator of NF-κB ligand (RANKL) activates, while osteoprotegerin (OPG) inhibits, osteoclastogenesis. A neutralizing Ab against RANKL, denosumab, improves bone strength in osteoporosis. OPG also improves muscle strength in mouse models of Duchenne’s muscular dystrophy (mdx) and denervation-induced atrophy, but its role and mechanisms of action on muscle weakness in other conditions remain to be investigated. We investigated the effects of RANKL inhibitors on muscle in osteoporotic women and mice that either overexpress RANKL (HuRANKLTg+), or lack Pparb and concomitantly develop sarcopenia (Pparb–/–). In women, taking denosumab for more than 3 years improved appendicular lean mass and handgrip strength compared with no treatment, whereas bisphosphonate did not. HuRANKLTg+ mice displayed lower limb force and maximal speed, while their leg muscle mass was diminished, with a lower number of type I and II fibers. Both OPG and denosumab increased limb force proportionally to the increase in muscle mass. They markedly improved muscle insulin sensitivity and glucose uptake, and decreased antimyogenic and inflammatory gene expression in muscle, such as myostatin and protein tyrosine phosphatase receptor-γ. Similarly, in Pparb–/–, OPG increased muscle volume and force while also normalizing insulin signaling and higher expression of inflammatory genes in skeletal muscle. In conclusion, RANKL deteriorates while its inhibitors improve muscle strength and insulin sensitivity in osteoporotic mice and humans. Hence, denosumab could represent a novel therapeutic approach for sarcopenia.

Authors

Nicolas Bonnet, Lucie Bourgoin, Emmanuel Biver, Eleni Douni, Serge Ferrari

×

Figure 2

Distribution of RANK and RANKL in tissue.

Options: View larger image (or click on image) Download as PowerPoint
Distribution of RANK and RANKL in tissue.
(A and B) Relative mRNA gene e...
(A and B) Relative mRNA gene expression of Rankl and Rank in 4-week-old mice (n = 12–18). Soleus, Sol; intestine, Int; white adipose tissue, WAT; gastrocnemius, Gas; brown adipose tissue, BAT. (C) Immunohistochemical staining of Dapi, RANK, and RANKL in gastrocnemius and soleus. Scale bars: 50 μm. (D) Western blot of RANK and RANKL in gastrocnemius and soleus. Bars show mean ± SEM. (E) Relative mRNA gene expression of human Rankl in WT (square) and huRANKLTg+ (circle). **P < 0.01, ***P < 0.001 significant difference versus WT. Statistical differences were assessed by 1-way ANOVA.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 55 X users
On 3 Facebook pages
Highlighted by 1 platforms
162 readers on Mendeley
See more details