Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter
Michael S. Lipkowitz, … , Vesna Najfeld, Ruth G. Abramson
Michael S. Lipkowitz, … , Vesna Najfeld, Ruth G. Abramson
Published May 1, 2001
Citation Information: J Clin Invest. 2001;107(9):1103-1115. https://doi.org/10.1172/JCI12471.
View: Text | PDF
Article Article has an altmetric score of 3

Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter

  • Text
  • PDF
Abstract

Elevated serum levels of uric acid have been associated with an increased risk for gout, hypertension, cardiovascular disease, and renal failure. The molecular mechanisms for the diminished excretion of urate in these disorders, however, remain poorly understood. Human galectin 9, which is highly homologous to the rat urate transporter rUAT, has been reported to be a secreted or cytosolic protein. We provide data that galectin 9 is hUAT, the first identified human urate transporter. hUAT is a highly selective urate ion channel when inserted in lipid bilayers. When expressed in renal epithelial cells it is an integral plasma membrane protein with at least two transmembrane domains. The gene for hUAT consists of 11 exons and is mapped to chromosome 17; a highly homologous gene, hUAT2, maps to a nearby region of chromosome 17 and is also likely to be a urate transporter. hUAT is expressed in a wide variety of tissues and is present in at least three isoforms; hUAT2 is less widely expressed at severalfold lower levels than hUAT. Further knowledge about the functions of hUAT, its isoforms, and hUAT2, as well as mutational analysis of hUAT1 and hUAT2 in individuals or families with hyperuricemia, should significantly improve our understanding of the molecular mechanisms of urate homeostasis.

Authors

Michael S. Lipkowitz, Edgar Leal-Pinto, Joshua Z. Rappoport, Vesna Najfeld, Ruth G. Abramson

×

Full Text PDF

Download PDF (4.05 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
40 readers on Mendeley
1 readers on CiteULike
See more details