The study of human B cell tolerance has been hampered by difficulties in identifying a sizable population of autoreactive B lymphocytes whose fate could be readily determined. Hypothesizing that B cells expressing intrinsically autoreactive antibodies encoded by the VH4-34 heavy chain gene (VH4-34 cells) represent such a population, we tracked VH4-34 cells in healthy individuals. Here, we show that naive VH4-34 cells are positively selected and mostly restricted to the follicular mantle zone. Subsequently, these cells are largely excluded from the germinal centers and underrepresented in the memory compartment. In healthy donors but not in patients with systemic lupus erythematosus (SLE), these cells are prevented from differentiating into antibody-producing plasma cells. This blockade can be overcome ex vivo using cultures of naive and memory VH4-34 cells in the presence of CD70, IL-2, and IL-10. VH4-34 cells may therefore represent an experimentally useful surrogate for autoantibody transgenes and should prove valuable in studying human B cell tolerance in a physiological, polyclonal environment. Our initial results suggest that both positive and negative selection processes participate in the maintenance of tolerance in autoreactive human B cells at multiple checkpoints throughout B cell differentiation and that at least some censoring mechanisms are faulty in SLE.
Aimee E. Pugh-Bernard, Gregg J. Silverman, Amedeo J. Cappione, Michael E. Villano, Daniel H. Ryan, Richard A. Insel, Iñaki Sanz
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,284 | 326 |
177 | 68 | |
Figure | 195 | 3 |
Table | 69 | 0 |
Citation downloads | 71 | 0 |
Totals | 1,796 | 397 |
Total Views | 2,193 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.