Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Rejuvenation of β cells by epigenetic editing
Tao Wang, Duanqing Pei
Tao Wang, Duanqing Pei
Published November 26, 2018
Citation Information: J Clin Invest. 2019;129(1):51-52. https://doi.org/10.1172/JCI124583.
View: Text | PDF
Commentary

Rejuvenation of β cells by epigenetic editing

  • Text
  • PDF
Abstract

Insulin-secreting β cell loss or dysfunction is a feature of both type 1 and type 2 diabetes. Strategies to restore β cell mass are limited, as sources of healthy islets are scarce and mature β cells are not readily expanded in vitro. In this issue of the JCI, Ou et al. report that mature β cell expansion can be induced in situ through epigenetic editing of regulatory elements in pancreatic tissue. Specifically, hypomethylation at imprinting control region 2 (ICR2) in human islets promoted β cell expansion. Importantly, transplantation of these epigenetically edited islets into diabetic mice reduced blood glucose levels. Together, these results support further evaluation of this strategy for restoring β cell mass in patients with diabetes.

Authors

Tao Wang, Duanqing Pei

×

Full Text PDF

Download PDF (98.67 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts