The introduction of anti-TNF antibody therapy has changed the course of treatment for Crohn’s disease. However, the fundamental mechanism for the onset of Crohn’s disease is still unknown, and the treatment strategy for this disease remains suboptimal. The assessment of the disease phenotype based on key environmental factors and genetic background may indicate options for the personalized treatment of Crohn’s disease. In this issue of the JCI, Liu et al. show that consumption of tobacco and the mutation of ATG16L1T300A, a prevalent Crohn’s disease susceptibility allele, drive defects in cells at the bottom of the intestinal crypt, the Paneth cells. These factors may provide novel targets for personalized medicine.
Shigeru Oshima, Mamoru Watanabe
Title and authors | Publication | Year |
---|---|---|
Oral Macrocystis pyrifera Fucoidan Administration Exhibits Anti-Inflammatory and Antioxidant Properties and Improves DSS-Induced Colitis in C57BL/6J Mice.
Ahmad T, Ishaq M, Karpiniec S, Park A, Stringer D, Singh N, Ratanpaul V, Wolfswinkel K, Fitton H, Caruso V, Eri R |
Pharmaceutics | 2022 |
The roles and functions of Paneth cells in Crohn’s disease: A critical review
E Yang, J Shen |
Cell Proliferation | 2020 |
Pulmonary surfactant: an immunological perspective
ZC Chroneos, Z Sever-Chroneos, VL Shepherd |
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology | 2009 |