Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A maresin 1/RORα/12-lipoxygenase autoregulatory circuit prevents inflammation and progression of nonalcoholic steatohepatitis
Yong-Hyun Han, … , Bong-Jin Lee, Mi-Ock Lee
Yong-Hyun Han, … , Bong-Jin Lee, Mi-Ock Lee
Published March 11, 2019
Citation Information: J Clin Invest. 2019;129(4):1684-1698. https://doi.org/10.1172/JCI124219.
View: Text | PDF
Research Article Hepatology Inflammation Article has an altmetric score of 8

A maresin 1/RORα/12-lipoxygenase autoregulatory circuit prevents inflammation and progression of nonalcoholic steatohepatitis

  • Text
  • PDF
Abstract

Retinoic acid–related orphan receptor α (RORα) is considered a key regulator of polarization in liver macrophages that is closely related to nonalcoholic steatohepatitis (NASH) pathogenesis. However, hepatic microenvironments that support the function of RORα as a polarity regulator were largely unknown. Here, we identified maresin 1 (MaR1), a docosahexaenoic acid (DHA) metabolite with a function of specialized proresolving mediator, as an endogenous ligand of RORα. MaR1 enhanced the expression and transcriptional activity of RORα and thereby increased the M2 polarity of liver macrophages. Administration of MaR1 protected mice from high-fat diet–induced NASH in a RORα-dependent manner. Surprisingly, RORα increased the level of MaR1 through transcriptional induction of 12-lipoxygenase (12-LOX), a key enzyme in MaR1 biosynthesis. Furthermore, we demonstrated that modulation of 12-LOX activity enhanced the protective function of DHA against NASH. Together, these results suggest that the MaR1/RORα/12-LOX autoregulatory circuit could offer potential therapeutic strategies for curing NASH.

Authors

Yong-Hyun Han, Kyong-Oh Shin, Ju-Yeon Kim, Daulat B. Khadka, Hyeon-Ji Kim, Yong-Moon Lee, Won-Jea Cho, Ji-Young Cha, Bong-Jin Lee, Mi-Ock Lee

×

Figure 6

RORα activates Alox12-dependent MaR1 synthesis.

Options: View larger image (or click on image) Download as PowerPoint
RORα activates Alox12-dependent MaR1 synthesis.
(A) Seven-week-old C57BL...
(A) Seven-week-old C57BL/6 mice were fed with either LFD or HFD for 12 weeks (n = 4) or fed with MCS or MCD for 4 weeks (n = 5) (first and second panels). The LFD-fed C57BL/6 mice were treated with 5 mg/kg BW SR1078 for 5 days (n = 5) (third panel). Seven-week-old LFD-fed floxed and RORα-MKO mice were sacrificed (n = 11) (fourth panel). (B) Liver samples were obtained from the floxed and RORα-MKO mice those described in Supplemental Figure 1 (n = 5). Levels of MaR1 and RvD1 in liver tissues were measured. *P < 0.05 and **P < 0.01; ##P < 0.01 for A and B. (C) DHA-treated peritoneal macrophages (PM) and Raw 264.7 cells were treated with 5 μM SR1078 for 24 hours, or the cells were infected by lenti-shGFP or lenti-shRORα for 48 hours. Intracellular amount of MaR1 were measured. *P < 0.05 (n = 3). (D) A scheme for biosynthesis of MaR1 by LOX family. (E) Expression levels of 12-LOX protein (Alox12 mRNA) and 12/15-LOX protein (Alox15 mRNA) in liver macrophages (LM), PM, Raw 264.7, bone marrow–derived macrophages (BMDM), and hepatocytes were measured by Western blotting and qRT-PCR. (F) mRNA levels of Alox genes in the isolated LMs from floxed and RORα-MKO mice as shown in A were measured by qRT-PCR. (G) LMs were treated with SR1078 or MaR1 (left). LMs were infected by AAV-GFP/AAV-RORα or lenti-shGFP/lenti-shRORα as indicated (right). The mRNA levels of Alox12 were measured by qRT-PCR. *P < 0.05 (n = 3) for F and G. (H) Schematic representation of the mouse Alox12 promoter with the putative ROREs shown as red boxes (top). Raw 264.7 cells were transfected with the deleted Alox12 promoter-Luc reporter with empty vector (EV) or Myc-RORα. Luciferase activity was measured and normalized by β-galactosidase activity. *P < 0.05 (n = 3) (middle). Raw 264.7 cells were transfected with Myc-RORα, or cells were treated with SR1078 or MaR1. DNA fragments that contain flanking region of the ROREs on the Alox12 promoter were immunoprecipitated with indicated antibodies and then amplified by PCR (bottom). (I) DHA-treated PMs were treated with 5 μM SR1078, 5 μM baicalein, or 10 μM NCTT-956. Intracellular MaR1 content was measured. (J) LMs were treated with baicalein, or NCTT-956 in the presence or absence of DHA. The mRNA levels of Rora were measured by qRT-PCR (left). The CD206+/CD80+ ratio of F4/80+ cells was determined by flow cytometry (right). *P < 0.05 and #P < 0.05 (n = 3) for I and J. The data represent mean ± SD. Data were analyzed by Mann–Whitney U test for simple comparisons or Kruskal-Wallis test for multiple groups.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 9 X users
Referenced in 1 patents
On 1 Facebook pages
103 readers on Mendeley
See more details