Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A nonhuman primate model of inherited retinal disease
Ala Moshiri, … , Jeffrey Rogers, Sara M. Thomasy
Ala Moshiri, … , Jeffrey Rogers, Sara M. Thomasy
Published January 22, 2019
Citation Information: J Clin Invest. 2019;129(2):863-874. https://doi.org/10.1172/JCI123980.
View: Text | PDF
Research Article Ophthalmology Article has an altmetric score of 6

A nonhuman primate model of inherited retinal disease

  • Text
  • PDF
Abstract

Inherited retinal degenerations are a common cause of untreatable blindness worldwide, with retinitis pigmentosa and cone dystrophy affecting approximately 1 in 3500 and 1 in 10,000 individuals, respectively. A major limitation to the development of effective therapies is the lack of availability of animal models that fully replicate the human condition. Particularly for cone disorders, rodent, canine, and feline models with no true macula have substantive limitations. By contrast, the cone-rich macula of a nonhuman primate (NHP) closely mirrors that of the human retina. Consequently, well-defined NHP models of heritable retinal diseases, particularly cone disorders that are predictive of human conditions, are necessary to more efficiently advance new therapies for patients. We have identified 4 related NHPs at the California National Primate Research Center with visual impairment and findings from clinical ophthalmic examination, advanced retinal imaging, and electrophysiology consistent with achromatopsia. Genetic sequencing confirmed a homozygous R565Q missense mutation in the catalytic domain of PDE6C, a cone-specific phototransduction enzyme associated with achromatopsia in humans. Biochemical studies demonstrate that the mutant mRNA is translated into a stable protein that displays normal cellular localization but is unable to hydrolyze cyclic GMP (cGMP). This NHP model of a cone disorder will not only serve as a therapeutic testing ground for achromatopsia gene replacement, but also for optimization of gene editing in the macula and of cone cell replacement in general.

Authors

Ala Moshiri, Rui Chen, Soohyun Kim, R. Alan Harris, Yumei Li, Muthuswamy Raveendran, Sarah Davis, Qingnan Liang, Ori Pomerantz, Jun Wang, Laura Garzel, Ashley Cameron, Glenn Yiu, J. Timothy Stout, Yijun Huang, Christopher J. Murphy, Jeffrey Roberts, Kota N. Gopalakrishna, Kimberly Boyd, Nikolai O. Artemyev, Jeffrey Rogers, Sara M. Thomasy

×

Figure 4

Foveal thinning is observed in visually impaired affected rhesus macaques.

Options: View larger image (or click on image) Download as PowerPoint
Foveal thinning is observed in visually impaired affected rhesus macaque...
Spectral domain optical coherence tomography (SD-OCT) of the foveal center is shown from a control animal and from the 4 affected animals with the PDE6CR565Q mutation. Quantification of the thickness of the foveal center (box plot, right), measured from the internal limiting membrane to Bruch’s membrane (red caliper in control panel). There is a trend toward foveal thinning with age among the 4 affected animals (123 μm at age 2 years, 119 μm at age 3 years, 115 μm at age 4 years, 108 μm at age 11 years) (n = 4 in each group, *P < 0.05). Whiskers represent minimum and maximum. Boxes represent interquartile range. Line represents the median, and dots represent data points.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 10 X users
On 1 Facebook pages
67 readers on Mendeley
See more details