Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity
Chien-Chun Steven Pai, … , Gillian Kingsbury, Lawrence Fong
Chien-Chun Steven Pai, … , Gillian Kingsbury, Lawrence Fong
Published December 10, 2018
Citation Information: J Clin Invest. 2019;129(1):349-363. https://doi.org/10.1172/JCI123391.
View: Text | PDF
Research Article Immunology Oncology

Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity

  • Text
  • PDF
Abstract

While immune checkpoint blockade leads to potent antitumor efficacy, it also leads to immune-related adverse events in cancer patients. These toxicities stem from systemic immune activation resulting in inflammation of multiple organs, including the gastrointestinal tract, lung, and endocrine organs. We developed a dual variable domain immunoglobulin of anti-CTLA4 antibody (anti-CTLA4 DVD, where CTLA4 is defined as cytotoxic T lymphocyte–associated antigen-4) possessing an outer tumor-specific antigen-binding site engineered to shield the inner anti-CTLA4–binding domain. Upon reaching the tumor, the outer domain was cleaved by membrane type-serine protease 1 (MT-SP1) present in the tumor microenvironment, leading to enhanced localization of CTLA4 blockade. Anti-CTLA4 DVD markedly reduced multiorgan immune toxicity by preserving tissue-resident Tregs in Rag 1–/– mice that received naive donor CD4+ T cells from WT C57BL/6j mice. Moreover, anti-CTLA4 DVD induced potent antitumor effects by decreasing tumor-infiltrating Tregs and increasing the infiltration of antigen-specific CD8+ T lymphocytes in TRAMP-C2–bearing C57BL/6j mice. Treg depletion was mediated through the antibody-dependent cellular cytotoxicity (ADCC) mechanism, as anti-CTLA4 without the FcγR-binding portion (anti-CTLA4 DANA) spared Tregs, preventing treatment-induced toxicities. In summary, our results demonstrate an approach to anti-CTLA4 blockade that depletes tumor-infiltrating, but not tissue-resident, Tregs, preserving antitumor effects while minimizing toxicity. Thus, our tumor-conditional anti-CTLA4 DVD provides an avenue for uncoupling antitumor efficacy from immunotherapy-induced toxicities.

Authors

Chien-Chun Steven Pai, Donald M. Simons, Xiaoqing Lu, Michael Evans, Junnian Wei, Yung-hua Wang, Mingyi Chen, John Huang, Chanhyuk Park, Anthony Chang, Jiaxi Wang, Susan Westmoreland, Christine Beam, Dave Banach, Diana Bowley, Feng Dong, Jane Seagal, Wendy Ritacco, Paul L. Richardson, Soumya Mitra, Grace Lynch, Pete Bousquet, John Mankovich, Gillian Kingsbury, Lawrence Fong

×

Figure 5

Colitis induction following treatment with anti-CTLA4, but not with anti-CTLA4 DVD.

Options: View larger image (or click on image) Download as PowerPoint
Colitis induction following treatment with anti-CTLA4, but not with anti...
(A) Foxp3 IHC staining was performed on GI tract tissue sections from mice receiving different Abs. Arrows indicate Foxp3+ cells. Experiments were conducted twice with 6 mice per group, and the representative figure from each treatment arm was shown. (B–D) Recipient C.B17 SCID mice were i.p. injected with 5 × 105 purified CD4+CD45RBhi cells with or without 2.5 × 105 CD4+CD45RBlo cells, and administered the indicated treatments at 200 μg per dose twice per week for 3 weeks. At day 35, all mice were evaluated by endoscopy and scored for colitis. Data were collected from 1 experiment with 10–15 mice per treatment arm. (B) Representative endoscopy images of a single mouse from each group. (C) Graphic representation of endoscopy scores at day 35. Red dots indicate animals from which colons were further analyzed for percentage of Foxp3+ cells among CD4+ cells in D. (E–G) Healthy C57BL/6j mice were injected with either anti-CTLA4 or anti-CTLA4 DVD. (E) Flow-gating strategy of spleen samples. (F) Percentage of CD44+ICOS+ in CD4+ T cell subsets. (G) Percentage of CD44+ICOS+ in CD8+ T cell subsets. For parts E–G, experiments were conducted twice, and the representative data from 1 experiment was from 4 mice per group. Bars represent mean or mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001, 1-way ANOVA with post hoc Tukey’s test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts