The hemostatic response to vascular injury culminates in a fibrin clot network that forms an initial barrier to blood loss and also contributes to microbial host defense. Fibrinogen is cleaved by thrombin into fibrin monomers that spontaneously polymerize into protofibrils and form the extensive fiber networks characteristic of blood clots. In this issue of the JCI, Macrae and colleagues characterize an alternative fibrin structure in which fibrinogen and fibrin assemble into a continuous 2D film at the exterior face of the fibrin clot network. Fibrin films connect to the underlying fiber network through tethering fibers and provide a protective barrier to microbial infiltration. These findings shed new light on a previously overlooked mechanism of fibrin assembly at the clot surface and provide a link between hemostasis and innate immunity.
Sean X. Gu, Steven R. Lentz
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 268 | 108 |
136 | 23 | |
Figure | 55 | 4 |
Citation downloads | 57 | 0 |
Totals | 516 | 135 |
Total Views | 651 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.