Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Short telomere syndromes cause a primary T cell immunodeficiency
Christa L. Wagner, … , Leo Luznik, Mary Armanios
Christa L. Wagner, … , Leo Luznik, Mary Armanios
Published September 4, 2018
Citation Information: J Clin Invest. 2018;128(12):5222-5234. https://doi.org/10.1172/JCI120216.
View: Text | PDF
Research Article Aging Genetics

Short telomere syndromes cause a primary T cell immunodeficiency

  • Text
  • PDF
Abstract

The mechanisms that drive T cell aging are not understood. We report that children and adult telomerase mutation carriers with short telomere length (TL) develop a T cell immunodeficiency that can manifest in the absence of bone marrow failure and causes life-threatening opportunistic infections. Mutation carriers shared T cell–aging phenotypes seen in adults 5 decades older, including depleted naive T cells, increased apoptosis, and restricted T cell repertoire. T cell receptor excision circles (TRECs) were also undetectable or low, suggesting that newborn screening may identify individuals with germline telomere maintenance defects. Telomerase-null mice with short TL showed defects throughout T cell development, including increased apoptosis of stimulated thymocytes, their intrathymic precursors, in addition to depleted hematopoietic reserves. When we examined the transcriptional programs of T cells from telomerase mutation carriers, we found they diverged from older adults with normal TL. Short telomere T cells upregulated DNA damage and intrinsic apoptosis pathways, while older adult T cells upregulated extrinsic apoptosis pathways and programmed cell death 1 (PD-1) expression. T cells from mice with short TL also showed an active DNA-damage response, in contrast with old WT mice, despite their shared propensity to apoptosis. Our data suggest there are TL-dependent and TL-independent mechanisms that differentially contribute to distinct molecular programs of T cell apoptosis with aging.

Authors

Christa L. Wagner, Vidya Sagar Hanumanthu, C. Conover Talbot Jr., Roshini S. Abraham, David Hamm, Dustin L. Gable, Christopher G. Kanakry, Carolyn D. Applegate, Janet Siliciano, J. Brooks Jackson, Stephen Desiderio, Jonathan K. Alder, Leo Luznik, Mary Armanios

×

Figure 2

Telomerase mutation carriers have premature skewing of T cell subsets and decreased TRECs.

Options: View larger image (or click on image) Download as PowerPoint
Telomerase mutation carriers have premature skewing of T cell subsets an...
(A) Telogram showing the age-adjusted lymphocyte TL for each individual falling in 1 of 3 groups studied. (B) Difference in TL from the age-adjusted median for cases shown in A. YC and OA groups cluster around the age-adjusted median, whereas ST patients are at or below the first percentile. (C) Representative flow plots of peripheral CD4+ T cells from YC and ST subjects. (D) Percentage of naive CD4+ T cells, defined as CD3+CD4+CD45RA+CCR7+. (E) Representative flow plots from YC and ST cases showing naive CD8+ T cells (CD3+CD8+CD45RA+CCR7+) and terminally differentiated CD8+ TEMRAs, defined as CD3+CD8+CD45RA+CCR7neg. (F) Percentage of CD8 naive and TEMRA populations as defined in E. For C–F, n = 5 YC, 2 male/3 female; n = 6 ST, 2 male/4 female; and n = 5 OA, 3 male/2 female. (G) Quantification of RTEs defined as CD4+CD45RA+CD31+. n = 6 YC, 2 male/4 female; n = 6 ST, 3 male/3 female; n = 4 OA, 2 male/2 female. (H) TRECs measured by quantitative PCR in telomerase mutation carriers. Data from each of the 10 patients (5 male/5 female) are graphed relative to an age-adjusted nomogram with the fifth percentile shown. The normal range was derived from 254 controls. For 9 patients, the mutated gene is shown, and 1 patient had classic features of dyskeratosis congenita (DC). In an infant with DKC1 mutation, TREC levels were undetectable. Error bars represent SEM. *P < 0.05; **P< 0.01; ***P < 0.001, Student’s t test, 2-sided.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts