Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (76)

Advertisement

Research Article Free access | 10.1172/JCI119857

Prevention of experimental myasthenia gravis by nasal administration of synthetic acetylcholine receptor T epitope sequences.

P I Karachunski, N S Ostlie, D K Okita, and B M Conti-Fine

Department of Biochemistry, College of Biological Sciences, University of Minnesota, St. Paul, Minnesota 55108, USA.

Find articles by Karachunski, P. in: PubMed | Google Scholar

Department of Biochemistry, College of Biological Sciences, University of Minnesota, St. Paul, Minnesota 55108, USA.

Find articles by Ostlie, N. in: PubMed | Google Scholar

Department of Biochemistry, College of Biological Sciences, University of Minnesota, St. Paul, Minnesota 55108, USA.

Find articles by Okita, D. in: PubMed | Google Scholar

Department of Biochemistry, College of Biological Sciences, University of Minnesota, St. Paul, Minnesota 55108, USA.

Find articles by Conti-Fine, B. in: PubMed | Google Scholar

Published December 15, 1997 - More info

Published in Volume 100, Issue 12 on December 15, 1997
J Clin Invest. 1997;100(12):3027–3035. https://doi.org/10.1172/JCI119857.
© 1997 The American Society for Clinical Investigation
Published December 15, 1997 - Version history
View PDF
Abstract

T cell tolerization prevents and improves T cell-mediated experimental autoimmune diseases. We investigated here whether similar approaches could be used for antibody (Ab)-mediated autoimmune diseases. Myasthenia gravis, caused by IgG Ab against muscle acetylcholine receptor (AChR), is perhaps the best characterized of them. We used an animal model, experimental myasthenia gravis induced in C57Bl/6 mice by immunization with Torpedo acetylcholine receptor (TAChR), to demonstrate that nasal administration of synthetic sequences of the TAChR alpha-subunit- forming epitopes recognized by anti-TAChR CD4+ T helper cells (residues alpha150-169, alpha181-200, and alpha360-378), given before and during immunization with TAChR, causes decreased CD4+ responsiveness to those epitopes and to TAChR, reduced synthesis of anti-TAChR Ab, and prevented experimental myasthenia gravis. These effects were not induced by nasal administration of synthetic epitopes of diphtheria toxin. Secretion of IL-2, IL-4, and IL-10 by spleen T cells from TAChR immunized mice, in response to challenge with TAChR in vitro, indicated that in sham-tolerized mice only Th1 cells responded to TAChR, while peptide-treated mice had also an AChR-specific Th2 response. The TAChR peptide treatment induced also in vitro anergy to the TAChR of the spleen T cells, which was reversed by IL-2.

Version history
  • Version 1 (December 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (76)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts