Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119780

Truncation of the cytoplasmic domain of beta3 in a variant form of Glanzmann thrombasthenia abrogates signaling through the integrin alpha(IIb)beta3 complex.

R Wang, S J Shattil, D R Ambruso, and P J Newman

Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee 53201-2178, USA.

Find articles by Wang, R. in: JCI | PubMed | Google Scholar

Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee 53201-2178, USA.

Find articles by Shattil, S. in: JCI | PubMed | Google Scholar

Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee 53201-2178, USA.

Find articles by Ambruso, D. in: JCI | PubMed | Google Scholar

Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee 53201-2178, USA.

Find articles by Newman, P. in: JCI | PubMed | Google Scholar

Published November 1, 1997 - More info

Published in Volume 100, Issue 9 on November 1, 1997
J Clin Invest. 1997;100(9):2393–2403. https://doi.org/10.1172/JCI119780.
© 1997 The American Society for Clinical Investigation
Published November 1, 1997 - Version history
View PDF
Abstract

Glanzmann thrombasthenia is an inherited bleeding disorder characterized by absence or dysfunction of the platelet integrin alpha(IIb)beta3. Patient RM is a thrombasthenic variant whose platelets fail to aggregate in response to physiological agonists, despite the fact that they express abundant levels of alpha(IIb)beta3 on their surface. Binding of soluble fibrinogen or fibrinogen mimetic antibodies to RM platelets did not occur, except in the presence of ligand-induced binding site (LIBS) antibodies that transformed the RM integrin complex into an active conformation from outside the cell. Sequence analysis of PCR-amplified genomic DNA and platelet mRNA revealed a C2268T nucleotide substitution in the gene encoding the integrin beta3 subunit that resulted in an Arg724Ter mutation, producing a truncated protein containing only the first eight of the 47 amino acids normally present in the cytoplasmic domain. Functional analysis of both RM platelets and CHO cells stably expressing this truncated integrin revealed that the alpha(IIb)beta3Arg724Ter complex is able to mediate binding to immobilized fibrinogen, though downstream events, including cytoskeletally-mediated cell spreading and tyrosine phosphorylation of focal adhesion kinase, pp125FAK, fail to occur. These studies establish the importance of the membrane-distal portion of the integrin beta3 cytoplasmic domain in bidirectional transmembrane signaling in human platelets, and the role of integrin signaling in maintaining normal hemostasis in vivo.

Version history
  • Version 1 (November 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts