Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119635

Growth as a solid tumor or reduced glucose concentrations in culture reversibly induce CD44-mediated hyaluronan recognition by Chinese hamster ovary cells.

Z Zheng, R D Cummings, P E Pummill, and P W Kincade

Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.

Find articles by Zheng, Z. in: PubMed | Google Scholar

Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.

Find articles by Cummings, R. in: PubMed | Google Scholar

Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.

Find articles by Pummill, P. in: PubMed | Google Scholar

Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.

Find articles by Kincade, P. in: PubMed | Google Scholar

Published September 1, 1997 - More info

Published in Volume 100, Issue 5 on September 1, 1997
J Clin Invest. 1997;100(5):1217–1229. https://doi.org/10.1172/JCI119635.
© 1997 The American Society for Clinical Investigation
Published September 1, 1997 - Version history
View PDF
Abstract

The density, molecular isoform, and posttranslational modifications of CD44 can markedly influence growth and metastatic behavior of tumors. Many CD44 functions, including some involving tumors, have been attributed to its ability to recognize hyaluronan (HA). However, only certain CD44-bearing cells bind soluble or immobilized HA. We now show that CD44 made by wild-type Chinese hamster ovary (CHO-K1) cells and a ligand-binding subclone differ with respect to N-linked glycosylation. While both bear CD44 with highly branched, complex-type glycoforms, CD44 expressed by the wild type was more extensively sialylated. CHO-K1 cells which failed to recognize HA when grown in culture gained this ability when grown as a solid tumor and reverted to a non-HA-binding state when returned to culture. The ability of CHO-K1 cells to recognize HA was also reversibly induced when glucose concentrations in the medium were reduced. Glucose restriction influenced CD44-mediated HA binding by many but not all, of a series of murine tumors. Glucose concentrations and glycosylation inhibitors only partially influenced CD44 receptor function on resting murine B lymphocytes. These observations suggest that glucose levels or other local environmental conditions may markedly influence glycosylation pathways used by some tumor cells, resulting in dramatic alteration of CD44-mediated functions.

Version history
  • Version 1 (September 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts