Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (51)

Advertisement

Research Article Free access | 10.1172/JCI119629

Leptin constrains acetylcholine-induced insulin secretion from pancreatic islets of ob/ob mice.

N G Chen, A G Swick, and D R Romsos

Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA.

Find articles by Chen, N. in: JCI | PubMed | Google Scholar

Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA.

Find articles by Swick, A. in: JCI | PubMed | Google Scholar

Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA.

Find articles by Romsos, D. in: JCI | PubMed | Google Scholar

Published September 1, 1997 - More info

Published in Volume 100, Issue 5 on September 1, 1997
J Clin Invest. 1997;100(5):1174–1179. https://doi.org/10.1172/JCI119629.
© 1997 The American Society for Clinical Investigation
Published September 1, 1997 - Version history
View PDF
Abstract

Hypersecretion of insulin from the pancreas is among the earliest detectable metabolic alterations in some genetically obese animals including the ob/ob mouse and in some obesity-prone humans. Since the primary cause of obesity in the ob/ob mouse is a lack of leptin due to a mutation in the ob gene, we tested the hypothesis that leptin targets a regulatory pathway in pancreatic islets to prevent hypersecretion of insulin. Insulin secretion is regulated by changes in blood glucose, as well as by peptides from the gastrointestinal tract and neurotransmitters that activate the pancreatic islet adenylyl cyclase (e.g., glucagon-like peptide-1) and phospholipase C (PLC) (e.g., acetylcholine) signaling pathways to further potentiate glucose-induced insulin secretion. Effects of leptin on each of these regulatory pathways were thus examined. Leptin did not influence glucose or glucagon-like peptide-1-induced insulin secretion from islets of either ob/ob or lean mice, consistent with earlier findings that these regulatory pathways do not contribute to the early-onset hypersecretion of insulin from islets of ob/ob mice. However, leptin did constrain the enhanced PLC- mediated insulin secretion characteristic of islets from ob/ob mice, without influencing release from islets of lean mice. A specific enhancement in PLC-mediated insulin secretion is the earliest reported developmental alteration in insulin secretion from islets of ob/ob mice, and thus a logical target for leptin action. This action of leptin on PLC-mediated insulin secretion was dose-dependent, rapid-onset (i.e., within 3 min), and reversible. Leptin was equally effective in constraining the enhanced insulin release from islets of ob/ob mice caused by protein kinase C (PKC) activation, a downstream mediator of the PLC signal pathway. One function of leptin in control of body composition is thus to target a PKC-regulated component of the PLC-PKC signaling system within islets to prevent hypersecretion of insulin.

Version history
  • Version 1 (September 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (51)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts