Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 6

See more details

Referenced in 11 patents
26 readers on Mendeley
  • Article usage
  • Citations to this article (91)

Advertisement

Research Article Free access | 10.1172/JCI119318

HIV does not replicate in naive CD4 T cells stimulated with CD3/CD28.

M Roederer, P A Raju, D K Mitra, L A Herzenberg, and L A Herzenberg

Department of Genetics, Stanford University, California 94305-5125, USA. roederer@darwin.stanford.edu

Find articles by Roederer, M. in: PubMed | Google Scholar

Department of Genetics, Stanford University, California 94305-5125, USA. roederer@darwin.stanford.edu

Find articles by Raju, P. in: PubMed | Google Scholar

Department of Genetics, Stanford University, California 94305-5125, USA. roederer@darwin.stanford.edu

Find articles by Mitra, D. in: PubMed | Google Scholar

Department of Genetics, Stanford University, California 94305-5125, USA. roederer@darwin.stanford.edu

Find articles by Herzenberg, L. in: PubMed | Google Scholar

Department of Genetics, Stanford University, California 94305-5125, USA. roederer@darwin.stanford.edu

Find articles by Herzenberg, L. in: PubMed | Google Scholar

Published April 1, 1997 - More info

Published in Volume 99, Issue 7 on April 1, 1997
J Clin Invest. 1997;99(7):1555–1564. https://doi.org/10.1172/JCI119318.
© 1997 The American Society for Clinical Investigation
Published April 1, 1997 - Version history
View PDF
Abstract

In this report, we demonstrate that the T cell tropic strain of HIV, LAI, does not replicate in naive CD4 T cells stimulated by cross-linking CD3 and CD28. In contrast, LAI replicates well in memory CD4 T cells stimulated in the same way. Unlike this physiologically relevant stimulation, PHA stimulates productive LAI replication in both naive and memory T cells. These studies were conducted with highly purified (FACS-isolated) subsets of CD4 T cells identified by expression of both CD45RA and CD62L. Remixing of purified T cells showed that naive T cells do not suppress LAI replication in memory T cells and that memory T cells do not restore LAI expression in naive T cells. The suppression of productive LAI replication in naive T cells is not due to differential expression of viral coreceptors, nor is it due to inhibition of activation of the important HIV transcription factors, nuclear factor-kappaB and activator protein-1. The inherent resistance of naive T cells to productive HIV infection, coupled with their proliferative advantage as demonstrated here, provides a sound basis for proposed clinical therapies using ex vivo expansion and reinfusion of CD4 T cells from HIV-infected adults.

Version history
  • Version 1 (April 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 6
  • Article usage
  • Citations to this article (91)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 11 patents
26 readers on Mendeley
See more details