We previously demonstrated that when platelets are in motion and in proximity to endothelial cells, they become unresponsive to agonists (Marcus, A.J., L.B. Safier, K.A. Hajjar, H.L. Ullman, N. Islam, M.J. Broekman, and A.M. Eiroa. 1991. J. Clin. Invest. 88:1690-1696). This inhibition is due to an ecto-ADPase on the surface of endothelial cells which metabolizes ADP released from activated platelets, resulting in blockade of the aggregation response. Human umbilical vein endothelial cells (HUVEC) ADPase was biochemically classified as an E-type ATP-diphosphohydrolase. The endothelial ecto-ADPase is herein identified as CD39, a molecule originally characterized as a lymphoid surface antigen. All HUVEC ecto-ADPase activity was immunoprecipitated by monoclonal antibodies to CD39. Surface localization of HUVEC CD39 was established by confocal microscopy and flow cytometric analyses. Transfection of COS cells with human CD39 resulted in both ecto-ADPase activity as well as surface expression of CD39. PCR analyses of cDNA obtained from HUVEC mRNA and recombinant human CD39 revealed products of the same size, and of identical sequence. Northern blot analyses demonstrated that HUVEC express the same sized transcripts for CD39 as MP-1 cells (from which CD39 was originally cloned). We established the role of CD39 as a prime endothelial thromboregulator by demonstrating that CD39-transfected COS cells acquired the ability to inhibit ADP-induced aggregation in platelet-rich plasma. The identification of HUVEC ADPase/CD39 as a constitutively expressed potent inhibitor of platelet reactivity offers new prospects for antithrombotic therapeusis.
A J Marcus, M J Broekman, J H Drosopoulos, N Islam, T N Alyonycheva, L B Safier, K A Hajjar, D N Posnett, M A Schoenborn, K A Schooley, R B Gayle, C R Maliszewski
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 355 | 186 |
92 | 54 | |
Citation downloads | 68 | 0 |
Totals | 515 | 240 |
Total Views | 755 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.