Progress in the treatment of hepatocellular carcinoma (HCC), a common tumor worldwide, has been disappointing. Inhibitors of topoisomerases are being widely studied as potential inducers of tumor cell apoptosis. Our aims were to determine whether topoisomerase-directed drugs would induce apoptosis in a human HCC cell line (Hep 3B) and, if so, to investigate the mechanism. The topoisomerase I poison camptothecin (CPT) induced apoptosis of Hep 3B cells in a time- and concentration-dependent manner. In contrast, the topoisomerase II poison etoposide failed to induce apoptosis despite the apparent stabilization of topoisomerase II-DNA complexes. Unexpectedly, CPT-induced apoptosis in this cell type occurred without any detectable cleavage of poly(ADP-ribose) polymerase or lamin B, polypeptides that are commonly cleaved in other cell types undergoing apoptosis. Likewise, Hep 3B cell apoptosis occurred without a detectable increase in interleukin-1beta-converting enzyme (ICE)-like or cysteine protease P32 (CPP32)-like protease activity. In contrast, trypsin-like protease activity (cleavage of Boc-Val-Leu-Lys-chloromethylaminocoumarin in situ) increased threefold in cells treated with CPT but not etoposide. Tosyl-lysyl chloromethyl ketone inhibited the trypsin-like protease activity and diminished CPT-induced apoptosis. These data demonstrate that (a) apoptosis is induced in Hep 3B cells after stabilization of topoisomerase I-DNA complexes but not after stabilization of topoisomerase II-DNA complexes as measured by alkaline filter elution; (b) Hep 3B cell apoptosis occurs without activation of ICE-like and CPP32-like protease activity; and (c) a trypsin-like protease activity appears to contribute to apoptosis in this cell type.
P N Adjei, S H Kaufmann, W Y Leung, F Mao, G J Gores
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 234 | 32 |
133 | 26 | |
Citation downloads | 60 | 0 |
Totals | 427 | 58 |
Total Views | 485 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.