In spontaneously hypertensive rats (SHR), high NaCl diets increase arterial pressure and sympathetic nervous system activity by decreasing noradrenaline release in the anterior hypothalamic area (AHA), thereby reducing the activation of sympathoinhibitory neurons in AHA. Atrial natriuretic peptide (ANP) can inhibit the release of noradrenaline, and ANP concentration is elevated in the AHA of SHR. The present study tests the hypothesis that in SHR, local ANP inhibits noradrenaline release from nerve terminals in AHA. Male SHR fed a basal or high NaCl diet for 2 wk and normotensive Wistar Kyoto rats (WKY) fed a basal NaCl diet were studied. In SHR on the basal diet, microperfusion of exogenous ANP into the AHA elicited a dose-related decrease in the concentration of the major noradrenaline metabolite 3-methoxy-4-hydroxy-phenylglycol (MOPEG) in the AHA; this effect was attenuated in the other two groups. In a subsequent study, the ANP-C (clearance) receptor agonist c-ANP was microperfused into the AHA to increase extracellular concentration of endogenous ANP in AHA. c-ANP reduced AHA MOPEG concentration in SHR on the basal NaCl diet but not in the other two groups. These data support the hypothesis that local ANP inhibits noradrenaline release in the AHA and thereby contributes to NaCl-sensitive hypertension in SHR.
N Peng, S Oparil, Q C Meng, J M Wyss
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 85 | 35 |
57 | 19 | |
Citation downloads | 43 | 0 |
Totals | 185 | 54 |
Total Views | 239 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.