Vascular remodeling in adult human elastic pulmonary arteries is characterized by diffuse neointimal lesions containing smooth muscle cells expressing extracellular matrix genes. Recent studies suggest vascular injury is needed to initiate remodeling and that growth factor mediators participate in the repair response. However, because neointimal formation is only observed in patients with pulmonary artery blood pressures approaching systemic levels, it has been hypothesized that systemic-like hemodynamic conditions are also necessary. To test that hypothesis, subclavian-pulmonary artery anastomoses were created in Sprague-Dawley rats under three different experimental conditions: no accompanying injury, or after monocrotaline or balloon endarterectomy injury. Pulmonary vascular remodeling was not induced by the subclavian-pulmonary artery anastomosis alone. A non-neointimal pattern of remodeling after mild monocrotaline-induced injury was converted into a neointimal pattern in the presence of the anastomosis. Neointima was also observed after severe, balloon endarterectomy-induced injury even in the absence of anastomosis. Tropoelastin, type I procollagen and TGF-beta gene expression, and angiotensin converting enzyme immunoreactivity, was confined to the neointima resembling the pattern of gene expression and immunoreactivity in human hypertensive elastic pulmonary artery neointimal lesions. These observations introduce the concepts that the type of injury and the associated hemodynamic conditions can modify the elastic pulmonary artery response to injury.
Y Tanaka, D P Schuster, E C Davis, G A Patterson, M D Botney
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 162 | 27 |
53 | 25 | |
Citation downloads | 45 | 0 |
Totals | 260 | 52 |
Total Views | 312 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.